Green persistent luminescence and the electronic structure of β-Sialon:Eu2

Divalent europium doped aluminum silicate oxy-nitride (β-Sialon:Eu2+) has been widely used in backlights for liquid-crystal displays due to its outstanding green emission properties. Herein, the persistent luminescence (PersL) performance and electronic structure of β-Sialon:Eu2+ with the general fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2019-10, Vol.7 (40), p.12544-12551
Hauptverfasser: Wang, Shuxin, Liu, Xiaolang, Qu, Bingyan, Song, Zhen, Wang, Zhizhen, Zhang, Shiyou, Wang, Feixiong, Wen-Tong, Geng, Liu, Quanlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12551
container_issue 40
container_start_page 12544
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 7
creator Wang, Shuxin
Liu, Xiaolang
Qu, Bingyan
Song, Zhen
Wang, Zhizhen
Zhang, Shiyou
Wang, Feixiong
Wen-Tong, Geng
Liu, Quanlin
description Divalent europium doped aluminum silicate oxy-nitride (β-Sialon:Eu2+) has been widely used in backlights for liquid-crystal displays due to its outstanding green emission properties. Herein, the persistent luminescence (PersL) performance and electronic structure of β-Sialon:Eu2+ with the general formula Eu0.015Si5.5Al0.485O0.515N7.485 are first reported. The PersL duration is observed to be 400 s after 254 nm irradiation. By virtue of density functional theory (DFT) calculations, we verify that the trap levels responsible for PersL are impurity levels induced by Si–O bonds located below the bottom of the conduction band (CB) on random substitution of Al–O for Si–N in β-Si3N4. The trap depth and density are estimated through experimental data. The charging process for PersL is clarified by the thermoluminescence excitation (TLE) spectrum. The electronic structure diagrams (host referred binding energy, HRBE and vacuum referred binding energy scheme, VRBE) of β-Sialon:Eu2+ are constructed to deeply understand the PersL mechanism and luminescence behavior. We propose a novel strategy to construct the HRBE schemes, i.e. using the onset energy of the thermoluminescence excitation (TLE) spectrum as the energy difference between the 4f ground state and the bottom of the CB to pinpoint the 4f energy level location of Eu2+. This work would allow more rational design of luminescent materials.
doi_str_mv 10.1039/c9tc03833g
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2306431894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306431894</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-52e8ed9ffdd19d22f09ff01efaf234a27c70d5230e020e589c6538df7c38380c3</originalsourceid><addsrcrecordid>eNo9j01OwzAUhC0EElXphhNYYh149osTmx2qSouoxAJYV5H9DKmCE_xzMQ7CmYgEYjbzbWZGw9ilgGsBaG6syRZQI76dsIUEBVWrsD79Z9mcs1VKR5ilRaMbs2CP20gU-EQx9SlTyHwoH32gZClY4l1wPL8Tp4FsjmPoLU85FptLJD56_v1VPffdMIbbTZEX7Mx3Q6LVny_Z6_3mZb2r9k_bh_XdvpqEwFwpSZqc8d45YZyUHmYGQb7zEutOtrYFpyQCgQRS2thGoXa-tfM3DRaX7Oq3d4rjZ6GUD8exxDBPHuZUU6PQpsYfmJtQVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306431894</pqid></control><display><type>article</type><title>Green persistent luminescence and the electronic structure of β-Sialon:Eu2</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Shuxin ; Liu, Xiaolang ; Qu, Bingyan ; Song, Zhen ; Wang, Zhizhen ; Zhang, Shiyou ; Wang, Feixiong ; Wen-Tong, Geng ; Liu, Quanlin</creator><creatorcontrib>Wang, Shuxin ; Liu, Xiaolang ; Qu, Bingyan ; Song, Zhen ; Wang, Zhizhen ; Zhang, Shiyou ; Wang, Feixiong ; Wen-Tong, Geng ; Liu, Quanlin</creatorcontrib><description>Divalent europium doped aluminum silicate oxy-nitride (β-Sialon:Eu2+) has been widely used in backlights for liquid-crystal displays due to its outstanding green emission properties. Herein, the persistent luminescence (PersL) performance and electronic structure of β-Sialon:Eu2+ with the general formula Eu0.015Si5.5Al0.485O0.515N7.485 are first reported. The PersL duration is observed to be 400 s after 254 nm irradiation. By virtue of density functional theory (DFT) calculations, we verify that the trap levels responsible for PersL are impurity levels induced by Si–O bonds located below the bottom of the conduction band (CB) on random substitution of Al–O for Si–N in β-Si3N4. The trap depth and density are estimated through experimental data. The charging process for PersL is clarified by the thermoluminescence excitation (TLE) spectrum. The electronic structure diagrams (host referred binding energy, HRBE and vacuum referred binding energy scheme, VRBE) of β-Sialon:Eu2+ are constructed to deeply understand the PersL mechanism and luminescence behavior. We propose a novel strategy to construct the HRBE schemes, i.e. using the onset energy of the thermoluminescence excitation (TLE) spectrum as the energy difference between the 4f ground state and the bottom of the CB to pinpoint the 4f energy level location of Eu2+. This work would allow more rational design of luminescent materials.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/c9tc03833g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum ; Aluminum silicates ; Backlights ; Binding energy ; Conduction bands ; Construction ; Density functional theory ; Density of states ; Electronic structure ; Energy ; Energy levels ; Europium ; Excitation spectra ; Liquid crystal displays ; Luminescence ; Parameters ; Silicon ; Thermoluminescence</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2019-10, Vol.7 (40), p.12544-12551</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Shuxin</creatorcontrib><creatorcontrib>Liu, Xiaolang</creatorcontrib><creatorcontrib>Qu, Bingyan</creatorcontrib><creatorcontrib>Song, Zhen</creatorcontrib><creatorcontrib>Wang, Zhizhen</creatorcontrib><creatorcontrib>Zhang, Shiyou</creatorcontrib><creatorcontrib>Wang, Feixiong</creatorcontrib><creatorcontrib>Wen-Tong, Geng</creatorcontrib><creatorcontrib>Liu, Quanlin</creatorcontrib><title>Green persistent luminescence and the electronic structure of β-Sialon:Eu2</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Divalent europium doped aluminum silicate oxy-nitride (β-Sialon:Eu2+) has been widely used in backlights for liquid-crystal displays due to its outstanding green emission properties. Herein, the persistent luminescence (PersL) performance and electronic structure of β-Sialon:Eu2+ with the general formula Eu0.015Si5.5Al0.485O0.515N7.485 are first reported. The PersL duration is observed to be 400 s after 254 nm irradiation. By virtue of density functional theory (DFT) calculations, we verify that the trap levels responsible for PersL are impurity levels induced by Si–O bonds located below the bottom of the conduction band (CB) on random substitution of Al–O for Si–N in β-Si3N4. The trap depth and density are estimated through experimental data. The charging process for PersL is clarified by the thermoluminescence excitation (TLE) spectrum. The electronic structure diagrams (host referred binding energy, HRBE and vacuum referred binding energy scheme, VRBE) of β-Sialon:Eu2+ are constructed to deeply understand the PersL mechanism and luminescence behavior. We propose a novel strategy to construct the HRBE schemes, i.e. using the onset energy of the thermoluminescence excitation (TLE) spectrum as the energy difference between the 4f ground state and the bottom of the CB to pinpoint the 4f energy level location of Eu2+. This work would allow more rational design of luminescent materials.</description><subject>Aluminum</subject><subject>Aluminum silicates</subject><subject>Backlights</subject><subject>Binding energy</subject><subject>Conduction bands</subject><subject>Construction</subject><subject>Density functional theory</subject><subject>Density of states</subject><subject>Electronic structure</subject><subject>Energy</subject><subject>Energy levels</subject><subject>Europium</subject><subject>Excitation spectra</subject><subject>Liquid crystal displays</subject><subject>Luminescence</subject><subject>Parameters</subject><subject>Silicon</subject><subject>Thermoluminescence</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9j01OwzAUhC0EElXphhNYYh149osTmx2qSouoxAJYV5H9DKmCE_xzMQ7CmYgEYjbzbWZGw9ilgGsBaG6syRZQI76dsIUEBVWrsD79Z9mcs1VKR5ilRaMbs2CP20gU-EQx9SlTyHwoH32gZClY4l1wPL8Tp4FsjmPoLU85FptLJD56_v1VPffdMIbbTZEX7Mx3Q6LVny_Z6_3mZb2r9k_bh_XdvpqEwFwpSZqc8d45YZyUHmYGQb7zEutOtrYFpyQCgQRS2thGoXa-tfM3DRaX7Oq3d4rjZ6GUD8exxDBPHuZUU6PQpsYfmJtQVA</recordid><startdate>20191028</startdate><enddate>20191028</enddate><creator>Wang, Shuxin</creator><creator>Liu, Xiaolang</creator><creator>Qu, Bingyan</creator><creator>Song, Zhen</creator><creator>Wang, Zhizhen</creator><creator>Zhang, Shiyou</creator><creator>Wang, Feixiong</creator><creator>Wen-Tong, Geng</creator><creator>Liu, Quanlin</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20191028</creationdate><title>Green persistent luminescence and the electronic structure of β-Sialon:Eu2</title><author>Wang, Shuxin ; Liu, Xiaolang ; Qu, Bingyan ; Song, Zhen ; Wang, Zhizhen ; Zhang, Shiyou ; Wang, Feixiong ; Wen-Tong, Geng ; Liu, Quanlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-52e8ed9ffdd19d22f09ff01efaf234a27c70d5230e020e589c6538df7c38380c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Aluminum silicates</topic><topic>Backlights</topic><topic>Binding energy</topic><topic>Conduction bands</topic><topic>Construction</topic><topic>Density functional theory</topic><topic>Density of states</topic><topic>Electronic structure</topic><topic>Energy</topic><topic>Energy levels</topic><topic>Europium</topic><topic>Excitation spectra</topic><topic>Liquid crystal displays</topic><topic>Luminescence</topic><topic>Parameters</topic><topic>Silicon</topic><topic>Thermoluminescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuxin</creatorcontrib><creatorcontrib>Liu, Xiaolang</creatorcontrib><creatorcontrib>Qu, Bingyan</creatorcontrib><creatorcontrib>Song, Zhen</creatorcontrib><creatorcontrib>Wang, Zhizhen</creatorcontrib><creatorcontrib>Zhang, Shiyou</creatorcontrib><creatorcontrib>Wang, Feixiong</creatorcontrib><creatorcontrib>Wen-Tong, Geng</creatorcontrib><creatorcontrib>Liu, Quanlin</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shuxin</au><au>Liu, Xiaolang</au><au>Qu, Bingyan</au><au>Song, Zhen</au><au>Wang, Zhizhen</au><au>Zhang, Shiyou</au><au>Wang, Feixiong</au><au>Wen-Tong, Geng</au><au>Liu, Quanlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green persistent luminescence and the electronic structure of β-Sialon:Eu2</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2019-10-28</date><risdate>2019</risdate><volume>7</volume><issue>40</issue><spage>12544</spage><epage>12551</epage><pages>12544-12551</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Divalent europium doped aluminum silicate oxy-nitride (β-Sialon:Eu2+) has been widely used in backlights for liquid-crystal displays due to its outstanding green emission properties. Herein, the persistent luminescence (PersL) performance and electronic structure of β-Sialon:Eu2+ with the general formula Eu0.015Si5.5Al0.485O0.515N7.485 are first reported. The PersL duration is observed to be 400 s after 254 nm irradiation. By virtue of density functional theory (DFT) calculations, we verify that the trap levels responsible for PersL are impurity levels induced by Si–O bonds located below the bottom of the conduction band (CB) on random substitution of Al–O for Si–N in β-Si3N4. The trap depth and density are estimated through experimental data. The charging process for PersL is clarified by the thermoluminescence excitation (TLE) spectrum. The electronic structure diagrams (host referred binding energy, HRBE and vacuum referred binding energy scheme, VRBE) of β-Sialon:Eu2+ are constructed to deeply understand the PersL mechanism and luminescence behavior. We propose a novel strategy to construct the HRBE schemes, i.e. using the onset energy of the thermoluminescence excitation (TLE) spectrum as the energy difference between the 4f ground state and the bottom of the CB to pinpoint the 4f energy level location of Eu2+. This work would allow more rational design of luminescent materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9tc03833g</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2019-10, Vol.7 (40), p.12544-12551
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2306431894
source Royal Society Of Chemistry Journals 2008-
subjects Aluminum
Aluminum silicates
Backlights
Binding energy
Conduction bands
Construction
Density functional theory
Density of states
Electronic structure
Energy
Energy levels
Europium
Excitation spectra
Liquid crystal displays
Luminescence
Parameters
Silicon
Thermoluminescence
title Green persistent luminescence and the electronic structure of β-Sialon:Eu2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20persistent%20luminescence%20and%20the%20electronic%20structure%20of%20%CE%B2-Sialon:Eu2&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Wang,%20Shuxin&rft.date=2019-10-28&rft.volume=7&rft.issue=40&rft.spage=12544&rft.epage=12551&rft.pages=12544-12551&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/c9tc03833g&rft_dat=%3Cproquest%3E2306431894%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306431894&rft_id=info:pmid/&rfr_iscdi=true