Pattern formation of metal-oxide hybrid nanostructures via the self-assembly of di-block copolymer blends

The templated self-assembly of block copolymers (BCPs) with a high Flory-Huggins interaction parameter (χ) can effectively create ultrafine, well-ordered nanostructures in the range of 5-30 nm. However, the self-assembled BCP patterns remain limited to possible morphological geometries and materials...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-10, Vol.11 (40), p.18559-18567
Hauptverfasser: Jung, Dae Soo, Bang, Jiwon, Park, Tae Wan, Lee, Seung Hyup, Jung, Yun Kyung, Byun, Myunghwan, Cho, Young-Rae, Kim, Kwang Ho, Seong, Gi Hun, Park, Woon Ik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18567
container_issue 40
container_start_page 18559
container_title Nanoscale
container_volume 11
creator Jung, Dae Soo
Bang, Jiwon
Park, Tae Wan
Lee, Seung Hyup
Jung, Yun Kyung
Byun, Myunghwan
Cho, Young-Rae
Kim, Kwang Ho
Seong, Gi Hun
Park, Woon Ik
description The templated self-assembly of block copolymers (BCPs) with a high Flory-Huggins interaction parameter (χ) can effectively create ultrafine, well-ordered nanostructures in the range of 5-30 nm. However, the self-assembled BCP patterns remain limited to possible morphological geometries and materials. Here, we introduce a novel and useful self-assembly method of di-BCP blends capable of generating diverse hybrid nanostructures consisting of oxide and metal materials through the rapid microphase separation of A-B/B-C BCP blends. We successfully obtained various hybridized BCP morphologies which cannot be acquired from a single di-BCP, such as hexagonally arranged hybrid dot and dot-in-hole patterns by controlling the mixing ratios of the solvents with a binary solvent annealing process. Furthermore, we demonstrate how the binary solvent vapor annealing process can provide a wide range of pattern geometries to di-BCP blends, showing a well-defined spontaneous one-to-one accommodation in dot-in-hole nanostructures. Specifically, we show clearly how the self-assembled BCPs can be functionalized via selective reduction and/or an oxidation process, resulting in the excellent positioning of confined silica nanodots into each nanospace of a Pt mesh. These results suggest a new method to achieve the pattern formation of more diverse and complex hybrid nanostructures using various blended BCPs.
doi_str_mv 10.1039/c9nr04038b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2306305609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306305609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-e903b81a858f1aec95b5fc01c22f6713072e1e7d11bd52e3b527310b7626bc853</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMorq5e_AES8CZUk0w_j7r4BYuK6Lkk6YTt2jZrkor993bddU_zwjzzDjyEnHF2xRkU17roHIsZ5GqPHIkxRQCZ2N_lNJ6QY--XjKUFpHBIJsAhHpfxEalfZQjoOmqsa2WobUetoS0G2UT2p66QLgbl6op2srM-uF6H3qGn37WkYYHUY2Mi6T22qhnWp1UdqcbqT6rtyjZDi46qBrvKn5ADIxuPp9s5JR_3d--zx2j-8vA0u5lHGngSIiwYqJzLPMkNl6iLRCVGM66FMGnGgWUCOWYV56pKBIJKRAacqSwVqdJ5AlNyseldOfvVow_l0vauG1-WAlgKLElZMVKXG0o7671DU65c3Uo3lJyVa6vlrHh--7N6O8Ln28petVjt0H-N8AvOI3Ln</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306305609</pqid></control><display><type>article</type><title>Pattern formation of metal-oxide hybrid nanostructures via the self-assembly of di-block copolymer blends</title><source>Royal Society Of Chemistry Journals</source><creator>Jung, Dae Soo ; Bang, Jiwon ; Park, Tae Wan ; Lee, Seung Hyup ; Jung, Yun Kyung ; Byun, Myunghwan ; Cho, Young-Rae ; Kim, Kwang Ho ; Seong, Gi Hun ; Park, Woon Ik</creator><creatorcontrib>Jung, Dae Soo ; Bang, Jiwon ; Park, Tae Wan ; Lee, Seung Hyup ; Jung, Yun Kyung ; Byun, Myunghwan ; Cho, Young-Rae ; Kim, Kwang Ho ; Seong, Gi Hun ; Park, Woon Ik</creatorcontrib><description>The templated self-assembly of block copolymers (BCPs) with a high Flory-Huggins interaction parameter (χ) can effectively create ultrafine, well-ordered nanostructures in the range of 5-30 nm. However, the self-assembled BCP patterns remain limited to possible morphological geometries and materials. Here, we introduce a novel and useful self-assembly method of di-BCP blends capable of generating diverse hybrid nanostructures consisting of oxide and metal materials through the rapid microphase separation of A-B/B-C BCP blends. We successfully obtained various hybridized BCP morphologies which cannot be acquired from a single di-BCP, such as hexagonally arranged hybrid dot and dot-in-hole patterns by controlling the mixing ratios of the solvents with a binary solvent annealing process. Furthermore, we demonstrate how the binary solvent vapor annealing process can provide a wide range of pattern geometries to di-BCP blends, showing a well-defined spontaneous one-to-one accommodation in dot-in-hole nanostructures. Specifically, we show clearly how the self-assembled BCPs can be functionalized via selective reduction and/or an oxidation process, resulting in the excellent positioning of confined silica nanodots into each nanospace of a Pt mesh. These results suggest a new method to achieve the pattern formation of more diverse and complex hybrid nanostructures using various blended BCPs.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr04038b</identifier><identifier>PMID: 31342044</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Annealing ; Block copolymers ; Interaction parameters ; Mathematical morphology ; Mixing ratio ; Mixtures ; Nanostructure ; Oxidation ; Self-assembly ; Silicon dioxide ; Size distribution ; Solvents ; Ultrafines</subject><ispartof>Nanoscale, 2019-10, Vol.11 (40), p.18559-18567</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-e903b81a858f1aec95b5fc01c22f6713072e1e7d11bd52e3b527310b7626bc853</citedby><cites>FETCH-LOGICAL-c315t-e903b81a858f1aec95b5fc01c22f6713072e1e7d11bd52e3b527310b7626bc853</cites><orcidid>0000-0002-0384-7309 ; 0000-0002-2577-477X ; 0000-0001-7401-717X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31342044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Dae Soo</creatorcontrib><creatorcontrib>Bang, Jiwon</creatorcontrib><creatorcontrib>Park, Tae Wan</creatorcontrib><creatorcontrib>Lee, Seung Hyup</creatorcontrib><creatorcontrib>Jung, Yun Kyung</creatorcontrib><creatorcontrib>Byun, Myunghwan</creatorcontrib><creatorcontrib>Cho, Young-Rae</creatorcontrib><creatorcontrib>Kim, Kwang Ho</creatorcontrib><creatorcontrib>Seong, Gi Hun</creatorcontrib><creatorcontrib>Park, Woon Ik</creatorcontrib><title>Pattern formation of metal-oxide hybrid nanostructures via the self-assembly of di-block copolymer blends</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The templated self-assembly of block copolymers (BCPs) with a high Flory-Huggins interaction parameter (χ) can effectively create ultrafine, well-ordered nanostructures in the range of 5-30 nm. However, the self-assembled BCP patterns remain limited to possible morphological geometries and materials. Here, we introduce a novel and useful self-assembly method of di-BCP blends capable of generating diverse hybrid nanostructures consisting of oxide and metal materials through the rapid microphase separation of A-B/B-C BCP blends. We successfully obtained various hybridized BCP morphologies which cannot be acquired from a single di-BCP, such as hexagonally arranged hybrid dot and dot-in-hole patterns by controlling the mixing ratios of the solvents with a binary solvent annealing process. Furthermore, we demonstrate how the binary solvent vapor annealing process can provide a wide range of pattern geometries to di-BCP blends, showing a well-defined spontaneous one-to-one accommodation in dot-in-hole nanostructures. Specifically, we show clearly how the self-assembled BCPs can be functionalized via selective reduction and/or an oxidation process, resulting in the excellent positioning of confined silica nanodots into each nanospace of a Pt mesh. These results suggest a new method to achieve the pattern formation of more diverse and complex hybrid nanostructures using various blended BCPs.</description><subject>Annealing</subject><subject>Block copolymers</subject><subject>Interaction parameters</subject><subject>Mathematical morphology</subject><subject>Mixing ratio</subject><subject>Mixtures</subject><subject>Nanostructure</subject><subject>Oxidation</subject><subject>Self-assembly</subject><subject>Silicon dioxide</subject><subject>Size distribution</subject><subject>Solvents</subject><subject>Ultrafines</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMorq5e_AES8CZUk0w_j7r4BYuK6Lkk6YTt2jZrkor993bddU_zwjzzDjyEnHF2xRkU17roHIsZ5GqPHIkxRQCZ2N_lNJ6QY--XjKUFpHBIJsAhHpfxEalfZQjoOmqsa2WobUetoS0G2UT2p66QLgbl6op2srM-uF6H3qGn37WkYYHUY2Mi6T22qhnWp1UdqcbqT6rtyjZDi46qBrvKn5ADIxuPp9s5JR_3d--zx2j-8vA0u5lHGngSIiwYqJzLPMkNl6iLRCVGM66FMGnGgWUCOWYV56pKBIJKRAacqSwVqdJ5AlNyseldOfvVow_l0vauG1-WAlgKLElZMVKXG0o7671DU65c3Uo3lJyVa6vlrHh--7N6O8Ln28petVjt0H-N8AvOI3Ln</recordid><startdate>20191028</startdate><enddate>20191028</enddate><creator>Jung, Dae Soo</creator><creator>Bang, Jiwon</creator><creator>Park, Tae Wan</creator><creator>Lee, Seung Hyup</creator><creator>Jung, Yun Kyung</creator><creator>Byun, Myunghwan</creator><creator>Cho, Young-Rae</creator><creator>Kim, Kwang Ho</creator><creator>Seong, Gi Hun</creator><creator>Park, Woon Ik</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0384-7309</orcidid><orcidid>https://orcid.org/0000-0002-2577-477X</orcidid><orcidid>https://orcid.org/0000-0001-7401-717X</orcidid></search><sort><creationdate>20191028</creationdate><title>Pattern formation of metal-oxide hybrid nanostructures via the self-assembly of di-block copolymer blends</title><author>Jung, Dae Soo ; Bang, Jiwon ; Park, Tae Wan ; Lee, Seung Hyup ; Jung, Yun Kyung ; Byun, Myunghwan ; Cho, Young-Rae ; Kim, Kwang Ho ; Seong, Gi Hun ; Park, Woon Ik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-e903b81a858f1aec95b5fc01c22f6713072e1e7d11bd52e3b527310b7626bc853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annealing</topic><topic>Block copolymers</topic><topic>Interaction parameters</topic><topic>Mathematical morphology</topic><topic>Mixing ratio</topic><topic>Mixtures</topic><topic>Nanostructure</topic><topic>Oxidation</topic><topic>Self-assembly</topic><topic>Silicon dioxide</topic><topic>Size distribution</topic><topic>Solvents</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Dae Soo</creatorcontrib><creatorcontrib>Bang, Jiwon</creatorcontrib><creatorcontrib>Park, Tae Wan</creatorcontrib><creatorcontrib>Lee, Seung Hyup</creatorcontrib><creatorcontrib>Jung, Yun Kyung</creatorcontrib><creatorcontrib>Byun, Myunghwan</creatorcontrib><creatorcontrib>Cho, Young-Rae</creatorcontrib><creatorcontrib>Kim, Kwang Ho</creatorcontrib><creatorcontrib>Seong, Gi Hun</creatorcontrib><creatorcontrib>Park, Woon Ik</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Dae Soo</au><au>Bang, Jiwon</au><au>Park, Tae Wan</au><au>Lee, Seung Hyup</au><au>Jung, Yun Kyung</au><au>Byun, Myunghwan</au><au>Cho, Young-Rae</au><au>Kim, Kwang Ho</au><au>Seong, Gi Hun</au><au>Park, Woon Ik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern formation of metal-oxide hybrid nanostructures via the self-assembly of di-block copolymer blends</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-10-28</date><risdate>2019</risdate><volume>11</volume><issue>40</issue><spage>18559</spage><epage>18567</epage><pages>18559-18567</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The templated self-assembly of block copolymers (BCPs) with a high Flory-Huggins interaction parameter (χ) can effectively create ultrafine, well-ordered nanostructures in the range of 5-30 nm. However, the self-assembled BCP patterns remain limited to possible morphological geometries and materials. Here, we introduce a novel and useful self-assembly method of di-BCP blends capable of generating diverse hybrid nanostructures consisting of oxide and metal materials through the rapid microphase separation of A-B/B-C BCP blends. We successfully obtained various hybridized BCP morphologies which cannot be acquired from a single di-BCP, such as hexagonally arranged hybrid dot and dot-in-hole patterns by controlling the mixing ratios of the solvents with a binary solvent annealing process. Furthermore, we demonstrate how the binary solvent vapor annealing process can provide a wide range of pattern geometries to di-BCP blends, showing a well-defined spontaneous one-to-one accommodation in dot-in-hole nanostructures. Specifically, we show clearly how the self-assembled BCPs can be functionalized via selective reduction and/or an oxidation process, resulting in the excellent positioning of confined silica nanodots into each nanospace of a Pt mesh. These results suggest a new method to achieve the pattern formation of more diverse and complex hybrid nanostructures using various blended BCPs.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31342044</pmid><doi>10.1039/c9nr04038b</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0384-7309</orcidid><orcidid>https://orcid.org/0000-0002-2577-477X</orcidid><orcidid>https://orcid.org/0000-0001-7401-717X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2019-10, Vol.11 (40), p.18559-18567
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_journals_2306305609
source Royal Society Of Chemistry Journals
subjects Annealing
Block copolymers
Interaction parameters
Mathematical morphology
Mixing ratio
Mixtures
Nanostructure
Oxidation
Self-assembly
Silicon dioxide
Size distribution
Solvents
Ultrafines
title Pattern formation of metal-oxide hybrid nanostructures via the self-assembly of di-block copolymer blends
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20formation%20of%20metal-oxide%20hybrid%20nanostructures%20via%20the%20self-assembly%20of%20di-block%20copolymer%20blends&rft.jtitle=Nanoscale&rft.au=Jung,%20Dae%20Soo&rft.date=2019-10-28&rft.volume=11&rft.issue=40&rft.spage=18559&rft.epage=18567&rft.pages=18559-18567&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr04038b&rft_dat=%3Cproquest_cross%3E2306305609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306305609&rft_id=info:pmid/31342044&rfr_iscdi=true