Facile Synthesis of Ultra‐Small Few‐Layer Nanostructured MoSe2 Embedded on N, P Co‐Doped Bio‐Carbon for High‐Performance Half/Full Sodium‐Ion and Potassium‐Ion Batteries

Sodium/potassium‐ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2019-10, Vol.25 (58), p.13411-13421
Hauptverfasser: Zeng, Lingxing, Kang, Biyu, Luo, Fenqiang, Fang, Yixing, Zheng, Cheng, Liu, Junbin, Liu, Renpin, Li, Xinye, Chen, Qinghua, Wei, Mingdeng, Qian, Qingrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13421
container_issue 58
container_start_page 13411
container_title Chemistry : a European journal
container_volume 25
creator Zeng, Lingxing
Kang, Biyu
Luo, Fenqiang
Fang, Yixing
Zheng, Cheng
Liu, Junbin
Liu, Renpin
Li, Xinye
Chen, Qinghua
Wei, Mingdeng
Qian, Qingrong
description Sodium/potassium‐ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity and stable structure, which are capable of accommodating large‐size ions during cycling. Furthermore, using sustainable natural biomass to fabricate electrodes for energy storage applications is a hot topic. Herein, an ultra‐small few‐layer nanostructured MoSe2 embedded on N, P co‐doped bio‐carbon is reported, which is synthesized by using chlorella as the adsorbent and precursor. As a consequence, the MoSe2/NP‐C‐2 composite represents exceedingly impressive electrochemical performance for both sodium‐ion batteries (SIBs) and potassium‐ion batteries (PIBs). It displays a promising reversible capacity (523 mAh g−1 at 100 mA g−1 after 100 cycles) and impressive long‐term cycling performance (192 mAh g−1 at 5 A g−1 even after 1000 cycles) in SIBs, which are some of the best properties of MoSe2‐based anode materials for SIBs to date. To further probe the great potential applications, full SIBs pairing the MoSe2/NP‐C‐2 composite anode with a Na3V2(PO4)3 cathode also exhibits a satisfactory capacity of 215 mAh g−1 at 500 mA g−1 after 100 cycles. Moreover, it also delivers a decent reversible capacity of 131 mAh g−1 at 1 A g−1 even after 250 cycles for PIBs. Renewable battery precursor: MoSe2‐NP‐C‐2 was initially synthesized through a one‐step calcination strategy by using waste chlorella as a precursor and absorbent, fabricating few‐layer MoSe2 embedded tightly on bio‐carbon, which exhibited promising potential as an alternative material for sodium‐ion half/full batteries and potassium‐ion batteries (see scheme).
doi_str_mv 10.1002/chem.201902899
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2306042242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306042242</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3039-f683bade66e216d2b94bae6cba2f30bec674c3e5a3def59e535ff7b50225c0763</originalsourceid><addsrcrecordid>eNpFUctOwzAQtBBIlMeVsyWuBBw7dvARQkuRClQqnKNNsqZBSVzsRFVvfAJ_w__wJbgCwWl3Zmd3pB1CTmJ2HjPGL8oltuecxZrxS613yCiWPI5EquQuGTGdpJGSQu-TA-9fGWNaCTEinxMo6wbpYtP1S_S1p9bQ56Z38PX-sWihaegE16GfwQYdfYDO-t4NZT84rOi9XSCn47bAqgrQdvThjM5pZsPCjV0F6rre9hm4IgyNdXRavywDM0cXUAtdiXQKjbmYDMFqYat6aMP4Lqihq-jc9uD9P3cNfY-uRn9E9gw0Ho9_6yF5noyfsmk0e7y9y65m0YtgQkdGXYoCKlQKeawqXuikAFRlAdwIVmCp0qQUKEFUaKRGKaQxaSEZ57JkqRKH5PTn7srZtwF9n7_awXXBMueCKZZwnvCg0j-qdfjlJl-5ugW3yWOWb5PJt8nkf8nk2XR8_4fENzjnjZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306042242</pqid></control><display><type>article</type><title>Facile Synthesis of Ultra‐Small Few‐Layer Nanostructured MoSe2 Embedded on N, P Co‐Doped Bio‐Carbon for High‐Performance Half/Full Sodium‐Ion and Potassium‐Ion Batteries</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Zeng, Lingxing ; Kang, Biyu ; Luo, Fenqiang ; Fang, Yixing ; Zheng, Cheng ; Liu, Junbin ; Liu, Renpin ; Li, Xinye ; Chen, Qinghua ; Wei, Mingdeng ; Qian, Qingrong</creator><creatorcontrib>Zeng, Lingxing ; Kang, Biyu ; Luo, Fenqiang ; Fang, Yixing ; Zheng, Cheng ; Liu, Junbin ; Liu, Renpin ; Li, Xinye ; Chen, Qinghua ; Wei, Mingdeng ; Qian, Qingrong</creatorcontrib><description>Sodium/potassium‐ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity and stable structure, which are capable of accommodating large‐size ions during cycling. Furthermore, using sustainable natural biomass to fabricate electrodes for energy storage applications is a hot topic. Herein, an ultra‐small few‐layer nanostructured MoSe2 embedded on N, P co‐doped bio‐carbon is reported, which is synthesized by using chlorella as the adsorbent and precursor. As a consequence, the MoSe2/NP‐C‐2 composite represents exceedingly impressive electrochemical performance for both sodium‐ion batteries (SIBs) and potassium‐ion batteries (PIBs). It displays a promising reversible capacity (523 mAh g−1 at 100 mA g−1 after 100 cycles) and impressive long‐term cycling performance (192 mAh g−1 at 5 A g−1 even after 1000 cycles) in SIBs, which are some of the best properties of MoSe2‐based anode materials for SIBs to date. To further probe the great potential applications, full SIBs pairing the MoSe2/NP‐C‐2 composite anode with a Na3V2(PO4)3 cathode also exhibits a satisfactory capacity of 215 mAh g−1 at 500 mA g−1 after 100 cycles. Moreover, it also delivers a decent reversible capacity of 131 mAh g−1 at 1 A g−1 even after 250 cycles for PIBs. Renewable battery precursor: MoSe2‐NP‐C‐2 was initially synthesized through a one‐step calcination strategy by using waste chlorella as a precursor and absorbent, fabricating few‐layer MoSe2 embedded tightly on bio‐carbon, which exhibited promising potential as an alternative material for sodium‐ion half/full batteries and potassium‐ion batteries (see scheme).</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201902899</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Biomass energy production ; Carbon ; Chemistry ; Cycles ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Energy storage ; few-layer nanostructures ; Molybdenum compounds ; MoSe2 ; N, P co-doped carbon ; Nanostructure ; Potassium ; Rechargeable batteries ; Redox potential ; Sodium ; Sodium-ion batteries ; sodium/potassium-ion batteries ; sustainable natural biomass</subject><ispartof>Chemistry : a European journal, 2019-10, Vol.25 (58), p.13411-13421</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2561-6031 ; 0000-0003-1170-7872 ; 0000-0003-4516-7966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201902899$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201902899$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zeng, Lingxing</creatorcontrib><creatorcontrib>Kang, Biyu</creatorcontrib><creatorcontrib>Luo, Fenqiang</creatorcontrib><creatorcontrib>Fang, Yixing</creatorcontrib><creatorcontrib>Zheng, Cheng</creatorcontrib><creatorcontrib>Liu, Junbin</creatorcontrib><creatorcontrib>Liu, Renpin</creatorcontrib><creatorcontrib>Li, Xinye</creatorcontrib><creatorcontrib>Chen, Qinghua</creatorcontrib><creatorcontrib>Wei, Mingdeng</creatorcontrib><creatorcontrib>Qian, Qingrong</creatorcontrib><title>Facile Synthesis of Ultra‐Small Few‐Layer Nanostructured MoSe2 Embedded on N, P Co‐Doped Bio‐Carbon for High‐Performance Half/Full Sodium‐Ion and Potassium‐Ion Batteries</title><title>Chemistry : a European journal</title><description>Sodium/potassium‐ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity and stable structure, which are capable of accommodating large‐size ions during cycling. Furthermore, using sustainable natural biomass to fabricate electrodes for energy storage applications is a hot topic. Herein, an ultra‐small few‐layer nanostructured MoSe2 embedded on N, P co‐doped bio‐carbon is reported, which is synthesized by using chlorella as the adsorbent and precursor. As a consequence, the MoSe2/NP‐C‐2 composite represents exceedingly impressive electrochemical performance for both sodium‐ion batteries (SIBs) and potassium‐ion batteries (PIBs). It displays a promising reversible capacity (523 mAh g−1 at 100 mA g−1 after 100 cycles) and impressive long‐term cycling performance (192 mAh g−1 at 5 A g−1 even after 1000 cycles) in SIBs, which are some of the best properties of MoSe2‐based anode materials for SIBs to date. To further probe the great potential applications, full SIBs pairing the MoSe2/NP‐C‐2 composite anode with a Na3V2(PO4)3 cathode also exhibits a satisfactory capacity of 215 mAh g−1 at 500 mA g−1 after 100 cycles. Moreover, it also delivers a decent reversible capacity of 131 mAh g−1 at 1 A g−1 even after 250 cycles for PIBs. Renewable battery precursor: MoSe2‐NP‐C‐2 was initially synthesized through a one‐step calcination strategy by using waste chlorella as a precursor and absorbent, fabricating few‐layer MoSe2 embedded tightly on bio‐carbon, which exhibited promising potential as an alternative material for sodium‐ion half/full batteries and potassium‐ion batteries (see scheme).</description><subject>Anodes</subject><subject>Biomass energy production</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Cycles</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>few-layer nanostructures</subject><subject>Molybdenum compounds</subject><subject>MoSe2</subject><subject>N, P co-doped carbon</subject><subject>Nanostructure</subject><subject>Potassium</subject><subject>Rechargeable batteries</subject><subject>Redox potential</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>sodium/potassium-ion batteries</subject><subject>sustainable natural biomass</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFUctOwzAQtBBIlMeVsyWuBBw7dvARQkuRClQqnKNNsqZBSVzsRFVvfAJ_w__wJbgCwWl3Zmd3pB1CTmJ2HjPGL8oltuecxZrxS613yCiWPI5EquQuGTGdpJGSQu-TA-9fGWNaCTEinxMo6wbpYtP1S_S1p9bQ56Z38PX-sWihaegE16GfwQYdfYDO-t4NZT84rOi9XSCn47bAqgrQdvThjM5pZsPCjV0F6rre9hm4IgyNdXRavywDM0cXUAtdiXQKjbmYDMFqYat6aMP4Lqihq-jc9uD9P3cNfY-uRn9E9gw0Ho9_6yF5noyfsmk0e7y9y65m0YtgQkdGXYoCKlQKeawqXuikAFRlAdwIVmCp0qQUKEFUaKRGKaQxaSEZ57JkqRKH5PTn7srZtwF9n7_awXXBMueCKZZwnvCg0j-qdfjlJl-5ugW3yWOWb5PJt8nkf8nk2XR8_4fENzjnjZU</recordid><startdate>20191017</startdate><enddate>20191017</enddate><creator>Zeng, Lingxing</creator><creator>Kang, Biyu</creator><creator>Luo, Fenqiang</creator><creator>Fang, Yixing</creator><creator>Zheng, Cheng</creator><creator>Liu, Junbin</creator><creator>Liu, Renpin</creator><creator>Li, Xinye</creator><creator>Chen, Qinghua</creator><creator>Wei, Mingdeng</creator><creator>Qian, Qingrong</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-2561-6031</orcidid><orcidid>https://orcid.org/0000-0003-1170-7872</orcidid><orcidid>https://orcid.org/0000-0003-4516-7966</orcidid></search><sort><creationdate>20191017</creationdate><title>Facile Synthesis of Ultra‐Small Few‐Layer Nanostructured MoSe2 Embedded on N, P Co‐Doped Bio‐Carbon for High‐Performance Half/Full Sodium‐Ion and Potassium‐Ion Batteries</title><author>Zeng, Lingxing ; Kang, Biyu ; Luo, Fenqiang ; Fang, Yixing ; Zheng, Cheng ; Liu, Junbin ; Liu, Renpin ; Li, Xinye ; Chen, Qinghua ; Wei, Mingdeng ; Qian, Qingrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3039-f683bade66e216d2b94bae6cba2f30bec674c3e5a3def59e535ff7b50225c0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Biomass energy production</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Cycles</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>few-layer nanostructures</topic><topic>Molybdenum compounds</topic><topic>MoSe2</topic><topic>N, P co-doped carbon</topic><topic>Nanostructure</topic><topic>Potassium</topic><topic>Rechargeable batteries</topic><topic>Redox potential</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>sodium/potassium-ion batteries</topic><topic>sustainable natural biomass</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Lingxing</creatorcontrib><creatorcontrib>Kang, Biyu</creatorcontrib><creatorcontrib>Luo, Fenqiang</creatorcontrib><creatorcontrib>Fang, Yixing</creatorcontrib><creatorcontrib>Zheng, Cheng</creatorcontrib><creatorcontrib>Liu, Junbin</creatorcontrib><creatorcontrib>Liu, Renpin</creatorcontrib><creatorcontrib>Li, Xinye</creatorcontrib><creatorcontrib>Chen, Qinghua</creatorcontrib><creatorcontrib>Wei, Mingdeng</creatorcontrib><creatorcontrib>Qian, Qingrong</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Lingxing</au><au>Kang, Biyu</au><au>Luo, Fenqiang</au><au>Fang, Yixing</au><au>Zheng, Cheng</au><au>Liu, Junbin</au><au>Liu, Renpin</au><au>Li, Xinye</au><au>Chen, Qinghua</au><au>Wei, Mingdeng</au><au>Qian, Qingrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile Synthesis of Ultra‐Small Few‐Layer Nanostructured MoSe2 Embedded on N, P Co‐Doped Bio‐Carbon for High‐Performance Half/Full Sodium‐Ion and Potassium‐Ion Batteries</atitle><jtitle>Chemistry : a European journal</jtitle><date>2019-10-17</date><risdate>2019</risdate><volume>25</volume><issue>58</issue><spage>13411</spage><epage>13421</epage><pages>13411-13421</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Sodium/potassium‐ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity and stable structure, which are capable of accommodating large‐size ions during cycling. Furthermore, using sustainable natural biomass to fabricate electrodes for energy storage applications is a hot topic. Herein, an ultra‐small few‐layer nanostructured MoSe2 embedded on N, P co‐doped bio‐carbon is reported, which is synthesized by using chlorella as the adsorbent and precursor. As a consequence, the MoSe2/NP‐C‐2 composite represents exceedingly impressive electrochemical performance for both sodium‐ion batteries (SIBs) and potassium‐ion batteries (PIBs). It displays a promising reversible capacity (523 mAh g−1 at 100 mA g−1 after 100 cycles) and impressive long‐term cycling performance (192 mAh g−1 at 5 A g−1 even after 1000 cycles) in SIBs, which are some of the best properties of MoSe2‐based anode materials for SIBs to date. To further probe the great potential applications, full SIBs pairing the MoSe2/NP‐C‐2 composite anode with a Na3V2(PO4)3 cathode also exhibits a satisfactory capacity of 215 mAh g−1 at 500 mA g−1 after 100 cycles. Moreover, it also delivers a decent reversible capacity of 131 mAh g−1 at 1 A g−1 even after 250 cycles for PIBs. Renewable battery precursor: MoSe2‐NP‐C‐2 was initially synthesized through a one‐step calcination strategy by using waste chlorella as a precursor and absorbent, fabricating few‐layer MoSe2 embedded tightly on bio‐carbon, which exhibited promising potential as an alternative material for sodium‐ion half/full batteries and potassium‐ion batteries (see scheme).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.201902899</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2561-6031</orcidid><orcidid>https://orcid.org/0000-0003-1170-7872</orcidid><orcidid>https://orcid.org/0000-0003-4516-7966</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2019-10, Vol.25 (58), p.13411-13421
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_journals_2306042242
source Wiley Online Library - AutoHoldings Journals
subjects Anodes
Biomass energy production
Carbon
Chemistry
Cycles
Electrochemical analysis
Electrochemistry
Electrode materials
Energy storage
few-layer nanostructures
Molybdenum compounds
MoSe2
N, P co-doped carbon
Nanostructure
Potassium
Rechargeable batteries
Redox potential
Sodium
Sodium-ion batteries
sodium/potassium-ion batteries
sustainable natural biomass
title Facile Synthesis of Ultra‐Small Few‐Layer Nanostructured MoSe2 Embedded on N, P Co‐Doped Bio‐Carbon for High‐Performance Half/Full Sodium‐Ion and Potassium‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A57%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20Synthesis%20of%20Ultra%E2%80%90Small%20Few%E2%80%90Layer%20Nanostructured%20MoSe2%20Embedded%20on%20N,%20P%20Co%E2%80%90Doped%20Bio%E2%80%90Carbon%20for%20High%E2%80%90Performance%20Half/Full%20Sodium%E2%80%90Ion%20and%20Potassium%E2%80%90Ion%20Batteries&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Zeng,%20Lingxing&rft.date=2019-10-17&rft.volume=25&rft.issue=58&rft.spage=13411&rft.epage=13421&rft.pages=13411-13421&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201902899&rft_dat=%3Cproquest_wiley%3E2306042242%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306042242&rft_id=info:pmid/&rfr_iscdi=true