Design, Modeling, Fabrication, and Verification of New Multifunctional MEMS/NEMS Components
The development of a new sensor generation with a significant performance gain is mainly aimed at increasing the sensitivity. In addition to that, a variety of properties such as integrability, power consumption, robustness, reliability, cross‐talk sensitivity, and others, can be equally important....
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2019-10, Vol.216 (19), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 216 |
creator | Freitag, Markus Sauppe, Matthias Auerswald, Christian Kriebel, David Schmidt, Henry Voigt, Sebastian Arnold, Benjamin Markert, Erik Hahn, Susann Hiller, Karla Heinkel, Ulrich Mehner, Jan |
description | The development of a new sensor generation with a significant performance gain is mainly aimed at increasing the sensitivity. In addition to that, a variety of properties such as integrability, power consumption, robustness, reliability, cross‐talk sensitivity, and others, can be equally important. Some properties scale directly with sensitivity, whereas others show trade‐off characteristics. An overview of different approaches for new sensor generations with enhanced performance is presented and discussed in this article. The main focus is on new microelectromechanical systems (MEMS) elements, fabricated within a standard high‐aspect‐ratio micromachining process and capacitive working principle. Herein, a novel MEMS‐based bandpass, a gap reduction technique, fluted electrodes for reduced damping, and a novel direct current/direct current (DC/DC) converter, is proposed. Acoustic emission sensing is chosen as example application to underline the challenging requirements for the design. Furthermore, the recent improvements in technology are presented. Based on bonding and deep reactive ion etching (BDRIE), it allows larger aspect ratios as well as through‐silicon vias and low‐pressure encapsulation. Consistent further miniaturization leads to the use of nanoscopic elements within MEMS as sensing component instead of the conventional electrostatic working principle. Unique properties of graphene rolls or carbon nanotubes (CNTs) enable promising sensitivity improvements if they are integrated at wafer‐level. Therefore, a design concept and formal verification‐tool is presented.
An overview of different approaches for new electrostatic sensor generations with enhanced performance is presented and discussed in this article. A novel microelectromechanical systems (MEMS) bandpass, a gap reduction technique, fluted electrodes for reduced damping, and a novel DC/DC converter, are presented. For the use of nanoscopic elements within MEMS as sensing component, a formal verification tool is presented. |
doi_str_mv | 10.1002/pssa.201800831 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2305688789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305688789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3171-6f2d2688afd92000ee4461c77cc09269ac091461e8bbfc87aa6b2f832c9b06c33</originalsourceid><addsrcrecordid>eNqFkMFLwzAUxoMoOKdXzwGv6_aSdml6HNOpsE1h6sVDSNNkZHRNbVrG_nszNubRy_seP77v8fgQuicwJAB0VHsvhxQIB-AxuUA9whmNWEyyy_MOcI1uvN8AJOMkJT30_ai9XVcDvHCFLm21HuCZzBurZGtdwLIq8JdurDkR7Axe6h1edGVrTVepA5QlXjwtVqNlGHjqtrWrdNX6W3RlZOn13Un76HP29DF9ieZvz6_TyTxSMUlJxAwtKONcmiKjAKB1kjCi0lQpyCjLZBASiOZ5bhRPpWQ5NTymKsuBqTjuo4fj3bpxP532rdi4rglfeUFjGIfTKc-Ca3h0qcZ532gj6sZuZbMXBMShQHEoUJwLDIHsGNjZUu__cYv31Wryl_0F2kFz5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305688789</pqid></control><display><type>article</type><title>Design, Modeling, Fabrication, and Verification of New Multifunctional MEMS/NEMS Components</title><source>Access via Wiley Online Library</source><creator>Freitag, Markus ; Sauppe, Matthias ; Auerswald, Christian ; Kriebel, David ; Schmidt, Henry ; Voigt, Sebastian ; Arnold, Benjamin ; Markert, Erik ; Hahn, Susann ; Hiller, Karla ; Heinkel, Ulrich ; Mehner, Jan</creator><creatorcontrib>Freitag, Markus ; Sauppe, Matthias ; Auerswald, Christian ; Kriebel, David ; Schmidt, Henry ; Voigt, Sebastian ; Arnold, Benjamin ; Markert, Erik ; Hahn, Susann ; Hiller, Karla ; Heinkel, Ulrich ; Mehner, Jan</creatorcontrib><description>The development of a new sensor generation with a significant performance gain is mainly aimed at increasing the sensitivity. In addition to that, a variety of properties such as integrability, power consumption, robustness, reliability, cross‐talk sensitivity, and others, can be equally important. Some properties scale directly with sensitivity, whereas others show trade‐off characteristics. An overview of different approaches for new sensor generations with enhanced performance is presented and discussed in this article. The main focus is on new microelectromechanical systems (MEMS) elements, fabricated within a standard high‐aspect‐ratio micromachining process and capacitive working principle. Herein, a novel MEMS‐based bandpass, a gap reduction technique, fluted electrodes for reduced damping, and a novel direct current/direct current (DC/DC) converter, is proposed. Acoustic emission sensing is chosen as example application to underline the challenging requirements for the design. Furthermore, the recent improvements in technology are presented. Based on bonding and deep reactive ion etching (BDRIE), it allows larger aspect ratios as well as through‐silicon vias and low‐pressure encapsulation. Consistent further miniaturization leads to the use of nanoscopic elements within MEMS as sensing component instead of the conventional electrostatic working principle. Unique properties of graphene rolls or carbon nanotubes (CNTs) enable promising sensitivity improvements if they are integrated at wafer‐level. Therefore, a design concept and formal verification‐tool is presented.
An overview of different approaches for new electrostatic sensor generations with enhanced performance is presented and discussed in this article. A novel microelectromechanical systems (MEMS) bandpass, a gap reduction technique, fluted electrodes for reduced damping, and a novel DC/DC converter, are presented. For the use of nanoscopic elements within MEMS as sensing component, a formal verification tool is presented.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201800831</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acoustic emission ; Aspect ratio ; Bandpass ; Carbon nanotubes ; Chemical bonds ; Converters ; Damping ; Direct current ; gap reduction ; Graphene ; microelectromechanical step‐up converter ; Microelectromechanical systems ; Micromachining ; micromechanical bandpass ; Miniaturization ; Nanoelectromechanical systems ; Performance enhancement ; Power consumption ; Properties (attributes) ; Reactive ion etching ; Sensitivity ; Verification ; VHDL</subject><ispartof>Physica status solidi. A, Applications and materials science, 2019-10, Vol.216 (19), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3171-6f2d2688afd92000ee4461c77cc09269ac091461e8bbfc87aa6b2f832c9b06c33</citedby><cites>FETCH-LOGICAL-c3171-6f2d2688afd92000ee4461c77cc09269ac091461e8bbfc87aa6b2f832c9b06c33</cites><orcidid>0000-0002-0328-8842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201800831$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201800831$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Freitag, Markus</creatorcontrib><creatorcontrib>Sauppe, Matthias</creatorcontrib><creatorcontrib>Auerswald, Christian</creatorcontrib><creatorcontrib>Kriebel, David</creatorcontrib><creatorcontrib>Schmidt, Henry</creatorcontrib><creatorcontrib>Voigt, Sebastian</creatorcontrib><creatorcontrib>Arnold, Benjamin</creatorcontrib><creatorcontrib>Markert, Erik</creatorcontrib><creatorcontrib>Hahn, Susann</creatorcontrib><creatorcontrib>Hiller, Karla</creatorcontrib><creatorcontrib>Heinkel, Ulrich</creatorcontrib><creatorcontrib>Mehner, Jan</creatorcontrib><title>Design, Modeling, Fabrication, and Verification of New Multifunctional MEMS/NEMS Components</title><title>Physica status solidi. A, Applications and materials science</title><description>The development of a new sensor generation with a significant performance gain is mainly aimed at increasing the sensitivity. In addition to that, a variety of properties such as integrability, power consumption, robustness, reliability, cross‐talk sensitivity, and others, can be equally important. Some properties scale directly with sensitivity, whereas others show trade‐off characteristics. An overview of different approaches for new sensor generations with enhanced performance is presented and discussed in this article. The main focus is on new microelectromechanical systems (MEMS) elements, fabricated within a standard high‐aspect‐ratio micromachining process and capacitive working principle. Herein, a novel MEMS‐based bandpass, a gap reduction technique, fluted electrodes for reduced damping, and a novel direct current/direct current (DC/DC) converter, is proposed. Acoustic emission sensing is chosen as example application to underline the challenging requirements for the design. Furthermore, the recent improvements in technology are presented. Based on bonding and deep reactive ion etching (BDRIE), it allows larger aspect ratios as well as through‐silicon vias and low‐pressure encapsulation. Consistent further miniaturization leads to the use of nanoscopic elements within MEMS as sensing component instead of the conventional electrostatic working principle. Unique properties of graphene rolls or carbon nanotubes (CNTs) enable promising sensitivity improvements if they are integrated at wafer‐level. Therefore, a design concept and formal verification‐tool is presented.
An overview of different approaches for new electrostatic sensor generations with enhanced performance is presented and discussed in this article. A novel microelectromechanical systems (MEMS) bandpass, a gap reduction technique, fluted electrodes for reduced damping, and a novel DC/DC converter, are presented. For the use of nanoscopic elements within MEMS as sensing component, a formal verification tool is presented.</description><subject>Acoustic emission</subject><subject>Aspect ratio</subject><subject>Bandpass</subject><subject>Carbon nanotubes</subject><subject>Chemical bonds</subject><subject>Converters</subject><subject>Damping</subject><subject>Direct current</subject><subject>gap reduction</subject><subject>Graphene</subject><subject>microelectromechanical step‐up converter</subject><subject>Microelectromechanical systems</subject><subject>Micromachining</subject><subject>micromechanical bandpass</subject><subject>Miniaturization</subject><subject>Nanoelectromechanical systems</subject><subject>Performance enhancement</subject><subject>Power consumption</subject><subject>Properties (attributes)</subject><subject>Reactive ion etching</subject><subject>Sensitivity</subject><subject>Verification</subject><subject>VHDL</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUxoMoOKdXzwGv6_aSdml6HNOpsE1h6sVDSNNkZHRNbVrG_nszNubRy_seP77v8fgQuicwJAB0VHsvhxQIB-AxuUA9whmNWEyyy_MOcI1uvN8AJOMkJT30_ai9XVcDvHCFLm21HuCZzBurZGtdwLIq8JdurDkR7Axe6h1edGVrTVepA5QlXjwtVqNlGHjqtrWrdNX6W3RlZOn13Un76HP29DF9ieZvz6_TyTxSMUlJxAwtKONcmiKjAKB1kjCi0lQpyCjLZBASiOZ5bhRPpWQ5NTymKsuBqTjuo4fj3bpxP532rdi4rglfeUFjGIfTKc-Ca3h0qcZ532gj6sZuZbMXBMShQHEoUJwLDIHsGNjZUu__cYv31Wryl_0F2kFz5w</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Freitag, Markus</creator><creator>Sauppe, Matthias</creator><creator>Auerswald, Christian</creator><creator>Kriebel, David</creator><creator>Schmidt, Henry</creator><creator>Voigt, Sebastian</creator><creator>Arnold, Benjamin</creator><creator>Markert, Erik</creator><creator>Hahn, Susann</creator><creator>Hiller, Karla</creator><creator>Heinkel, Ulrich</creator><creator>Mehner, Jan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0328-8842</orcidid></search><sort><creationdate>201910</creationdate><title>Design, Modeling, Fabrication, and Verification of New Multifunctional MEMS/NEMS Components</title><author>Freitag, Markus ; Sauppe, Matthias ; Auerswald, Christian ; Kriebel, David ; Schmidt, Henry ; Voigt, Sebastian ; Arnold, Benjamin ; Markert, Erik ; Hahn, Susann ; Hiller, Karla ; Heinkel, Ulrich ; Mehner, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3171-6f2d2688afd92000ee4461c77cc09269ac091461e8bbfc87aa6b2f832c9b06c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic emission</topic><topic>Aspect ratio</topic><topic>Bandpass</topic><topic>Carbon nanotubes</topic><topic>Chemical bonds</topic><topic>Converters</topic><topic>Damping</topic><topic>Direct current</topic><topic>gap reduction</topic><topic>Graphene</topic><topic>microelectromechanical step‐up converter</topic><topic>Microelectromechanical systems</topic><topic>Micromachining</topic><topic>micromechanical bandpass</topic><topic>Miniaturization</topic><topic>Nanoelectromechanical systems</topic><topic>Performance enhancement</topic><topic>Power consumption</topic><topic>Properties (attributes)</topic><topic>Reactive ion etching</topic><topic>Sensitivity</topic><topic>Verification</topic><topic>VHDL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freitag, Markus</creatorcontrib><creatorcontrib>Sauppe, Matthias</creatorcontrib><creatorcontrib>Auerswald, Christian</creatorcontrib><creatorcontrib>Kriebel, David</creatorcontrib><creatorcontrib>Schmidt, Henry</creatorcontrib><creatorcontrib>Voigt, Sebastian</creatorcontrib><creatorcontrib>Arnold, Benjamin</creatorcontrib><creatorcontrib>Markert, Erik</creatorcontrib><creatorcontrib>Hahn, Susann</creatorcontrib><creatorcontrib>Hiller, Karla</creatorcontrib><creatorcontrib>Heinkel, Ulrich</creatorcontrib><creatorcontrib>Mehner, Jan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freitag, Markus</au><au>Sauppe, Matthias</au><au>Auerswald, Christian</au><au>Kriebel, David</au><au>Schmidt, Henry</au><au>Voigt, Sebastian</au><au>Arnold, Benjamin</au><au>Markert, Erik</au><au>Hahn, Susann</au><au>Hiller, Karla</au><au>Heinkel, Ulrich</au><au>Mehner, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, Modeling, Fabrication, and Verification of New Multifunctional MEMS/NEMS Components</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2019-10</date><risdate>2019</risdate><volume>216</volume><issue>19</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>The development of a new sensor generation with a significant performance gain is mainly aimed at increasing the sensitivity. In addition to that, a variety of properties such as integrability, power consumption, robustness, reliability, cross‐talk sensitivity, and others, can be equally important. Some properties scale directly with sensitivity, whereas others show trade‐off characteristics. An overview of different approaches for new sensor generations with enhanced performance is presented and discussed in this article. The main focus is on new microelectromechanical systems (MEMS) elements, fabricated within a standard high‐aspect‐ratio micromachining process and capacitive working principle. Herein, a novel MEMS‐based bandpass, a gap reduction technique, fluted electrodes for reduced damping, and a novel direct current/direct current (DC/DC) converter, is proposed. Acoustic emission sensing is chosen as example application to underline the challenging requirements for the design. Furthermore, the recent improvements in technology are presented. Based on bonding and deep reactive ion etching (BDRIE), it allows larger aspect ratios as well as through‐silicon vias and low‐pressure encapsulation. Consistent further miniaturization leads to the use of nanoscopic elements within MEMS as sensing component instead of the conventional electrostatic working principle. Unique properties of graphene rolls or carbon nanotubes (CNTs) enable promising sensitivity improvements if they are integrated at wafer‐level. Therefore, a design concept and formal verification‐tool is presented.
An overview of different approaches for new electrostatic sensor generations with enhanced performance is presented and discussed in this article. A novel microelectromechanical systems (MEMS) bandpass, a gap reduction technique, fluted electrodes for reduced damping, and a novel DC/DC converter, are presented. For the use of nanoscopic elements within MEMS as sensing component, a formal verification tool is presented.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201800831</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0328-8842</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2019-10, Vol.216 (19), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2305688789 |
source | Access via Wiley Online Library |
subjects | Acoustic emission Aspect ratio Bandpass Carbon nanotubes Chemical bonds Converters Damping Direct current gap reduction Graphene microelectromechanical step‐up converter Microelectromechanical systems Micromachining micromechanical bandpass Miniaturization Nanoelectromechanical systems Performance enhancement Power consumption Properties (attributes) Reactive ion etching Sensitivity Verification VHDL |
title | Design, Modeling, Fabrication, and Verification of New Multifunctional MEMS/NEMS Components |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20Modeling,%20Fabrication,%20and%20Verification%20of%20New%20Multifunctional%20MEMS/NEMS%20Components&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Freitag,%20Markus&rft.date=2019-10&rft.volume=216&rft.issue=19&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201800831&rft_dat=%3Cproquest_cross%3E2305688789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305688789&rft_id=info:pmid/&rfr_iscdi=true |