Design, Modeling, Fabrication, and Verification of New Multifunctional MEMS/NEMS Components

The development of a new sensor generation with a significant performance gain is mainly aimed at increasing the sensitivity. In addition to that, a variety of properties such as integrability, power consumption, robustness, reliability, cross‐talk sensitivity, and others, can be equally important....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2019-10, Vol.216 (19), p.n/a
Hauptverfasser: Freitag, Markus, Sauppe, Matthias, Auerswald, Christian, Kriebel, David, Schmidt, Henry, Voigt, Sebastian, Arnold, Benjamin, Markert, Erik, Hahn, Susann, Hiller, Karla, Heinkel, Ulrich, Mehner, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 216
creator Freitag, Markus
Sauppe, Matthias
Auerswald, Christian
Kriebel, David
Schmidt, Henry
Voigt, Sebastian
Arnold, Benjamin
Markert, Erik
Hahn, Susann
Hiller, Karla
Heinkel, Ulrich
Mehner, Jan
description The development of a new sensor generation with a significant performance gain is mainly aimed at increasing the sensitivity. In addition to that, a variety of properties such as integrability, power consumption, robustness, reliability, cross‐talk sensitivity, and others, can be equally important. Some properties scale directly with sensitivity, whereas others show trade‐off characteristics. An overview of different approaches for new sensor generations with enhanced performance is presented and discussed in this article. The main focus is on new microelectromechanical systems (MEMS) elements, fabricated within a standard high‐aspect‐ratio micromachining process and capacitive working principle. Herein, a novel MEMS‐based bandpass, a gap reduction technique, fluted electrodes for reduced damping, and a novel direct current/direct current (DC/DC) converter, is proposed. Acoustic emission sensing is chosen as example application to underline the challenging requirements for the design. Furthermore, the recent improvements in technology are presented. Based on bonding and deep reactive ion etching (BDRIE), it allows larger aspect ratios as well as through‐silicon vias and low‐pressure encapsulation. Consistent further miniaturization leads to the use of nanoscopic elements within MEMS as sensing component instead of the conventional electrostatic working principle. Unique properties of graphene rolls or carbon nanotubes (CNTs) enable promising sensitivity improvements if they are integrated at wafer‐level. Therefore, a design concept and formal verification‐tool is presented. An overview of different approaches for new electrostatic sensor generations with enhanced performance is presented and discussed in this article. A novel microelectromechanical systems (MEMS) bandpass, a gap reduction technique, fluted electrodes for reduced damping, and a novel DC/DC converter, are presented. For the use of nanoscopic elements within MEMS as sensing component, a formal verification tool is presented.
doi_str_mv 10.1002/pssa.201800831
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2305688789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305688789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3171-6f2d2688afd92000ee4461c77cc09269ac091461e8bbfc87aa6b2f832c9b06c33</originalsourceid><addsrcrecordid>eNqFkMFLwzAUxoMoOKdXzwGv6_aSdml6HNOpsE1h6sVDSNNkZHRNbVrG_nszNubRy_seP77v8fgQuicwJAB0VHsvhxQIB-AxuUA9whmNWEyyy_MOcI1uvN8AJOMkJT30_ai9XVcDvHCFLm21HuCZzBurZGtdwLIq8JdurDkR7Axe6h1edGVrTVepA5QlXjwtVqNlGHjqtrWrdNX6W3RlZOn13Un76HP29DF9ieZvz6_TyTxSMUlJxAwtKONcmiKjAKB1kjCi0lQpyCjLZBASiOZ5bhRPpWQ5NTymKsuBqTjuo4fj3bpxP532rdi4rglfeUFjGIfTKc-Ca3h0qcZ532gj6sZuZbMXBMShQHEoUJwLDIHsGNjZUu__cYv31Wryl_0F2kFz5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305688789</pqid></control><display><type>article</type><title>Design, Modeling, Fabrication, and Verification of New Multifunctional MEMS/NEMS Components</title><source>Access via Wiley Online Library</source><creator>Freitag, Markus ; Sauppe, Matthias ; Auerswald, Christian ; Kriebel, David ; Schmidt, Henry ; Voigt, Sebastian ; Arnold, Benjamin ; Markert, Erik ; Hahn, Susann ; Hiller, Karla ; Heinkel, Ulrich ; Mehner, Jan</creator><creatorcontrib>Freitag, Markus ; Sauppe, Matthias ; Auerswald, Christian ; Kriebel, David ; Schmidt, Henry ; Voigt, Sebastian ; Arnold, Benjamin ; Markert, Erik ; Hahn, Susann ; Hiller, Karla ; Heinkel, Ulrich ; Mehner, Jan</creatorcontrib><description>The development of a new sensor generation with a significant performance gain is mainly aimed at increasing the sensitivity. In addition to that, a variety of properties such as integrability, power consumption, robustness, reliability, cross‐talk sensitivity, and others, can be equally important. Some properties scale directly with sensitivity, whereas others show trade‐off characteristics. An overview of different approaches for new sensor generations with enhanced performance is presented and discussed in this article. The main focus is on new microelectromechanical systems (MEMS) elements, fabricated within a standard high‐aspect‐ratio micromachining process and capacitive working principle. Herein, a novel MEMS‐based bandpass, a gap reduction technique, fluted electrodes for reduced damping, and a novel direct current/direct current (DC/DC) converter, is proposed. Acoustic emission sensing is chosen as example application to underline the challenging requirements for the design. Furthermore, the recent improvements in technology are presented. Based on bonding and deep reactive ion etching (BDRIE), it allows larger aspect ratios as well as through‐silicon vias and low‐pressure encapsulation. Consistent further miniaturization leads to the use of nanoscopic elements within MEMS as sensing component instead of the conventional electrostatic working principle. Unique properties of graphene rolls or carbon nanotubes (CNTs) enable promising sensitivity improvements if they are integrated at wafer‐level. Therefore, a design concept and formal verification‐tool is presented. An overview of different approaches for new electrostatic sensor generations with enhanced performance is presented and discussed in this article. A novel microelectromechanical systems (MEMS) bandpass, a gap reduction technique, fluted electrodes for reduced damping, and a novel DC/DC converter, are presented. For the use of nanoscopic elements within MEMS as sensing component, a formal verification tool is presented.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201800831</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acoustic emission ; Aspect ratio ; Bandpass ; Carbon nanotubes ; Chemical bonds ; Converters ; Damping ; Direct current ; gap reduction ; Graphene ; microelectromechanical step‐up converter ; Microelectromechanical systems ; Micromachining ; micromechanical bandpass ; Miniaturization ; Nanoelectromechanical systems ; Performance enhancement ; Power consumption ; Properties (attributes) ; Reactive ion etching ; Sensitivity ; Verification ; VHDL</subject><ispartof>Physica status solidi. A, Applications and materials science, 2019-10, Vol.216 (19), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3171-6f2d2688afd92000ee4461c77cc09269ac091461e8bbfc87aa6b2f832c9b06c33</citedby><cites>FETCH-LOGICAL-c3171-6f2d2688afd92000ee4461c77cc09269ac091461e8bbfc87aa6b2f832c9b06c33</cites><orcidid>0000-0002-0328-8842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201800831$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201800831$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Freitag, Markus</creatorcontrib><creatorcontrib>Sauppe, Matthias</creatorcontrib><creatorcontrib>Auerswald, Christian</creatorcontrib><creatorcontrib>Kriebel, David</creatorcontrib><creatorcontrib>Schmidt, Henry</creatorcontrib><creatorcontrib>Voigt, Sebastian</creatorcontrib><creatorcontrib>Arnold, Benjamin</creatorcontrib><creatorcontrib>Markert, Erik</creatorcontrib><creatorcontrib>Hahn, Susann</creatorcontrib><creatorcontrib>Hiller, Karla</creatorcontrib><creatorcontrib>Heinkel, Ulrich</creatorcontrib><creatorcontrib>Mehner, Jan</creatorcontrib><title>Design, Modeling, Fabrication, and Verification of New Multifunctional MEMS/NEMS Components</title><title>Physica status solidi. A, Applications and materials science</title><description>The development of a new sensor generation with a significant performance gain is mainly aimed at increasing the sensitivity. In addition to that, a variety of properties such as integrability, power consumption, robustness, reliability, cross‐talk sensitivity, and others, can be equally important. Some properties scale directly with sensitivity, whereas others show trade‐off characteristics. An overview of different approaches for new sensor generations with enhanced performance is presented and discussed in this article. The main focus is on new microelectromechanical systems (MEMS) elements, fabricated within a standard high‐aspect‐ratio micromachining process and capacitive working principle. Herein, a novel MEMS‐based bandpass, a gap reduction technique, fluted electrodes for reduced damping, and a novel direct current/direct current (DC/DC) converter, is proposed. Acoustic emission sensing is chosen as example application to underline the challenging requirements for the design. Furthermore, the recent improvements in technology are presented. Based on bonding and deep reactive ion etching (BDRIE), it allows larger aspect ratios as well as through‐silicon vias and low‐pressure encapsulation. Consistent further miniaturization leads to the use of nanoscopic elements within MEMS as sensing component instead of the conventional electrostatic working principle. Unique properties of graphene rolls or carbon nanotubes (CNTs) enable promising sensitivity improvements if they are integrated at wafer‐level. Therefore, a design concept and formal verification‐tool is presented. An overview of different approaches for new electrostatic sensor generations with enhanced performance is presented and discussed in this article. A novel microelectromechanical systems (MEMS) bandpass, a gap reduction technique, fluted electrodes for reduced damping, and a novel DC/DC converter, are presented. For the use of nanoscopic elements within MEMS as sensing component, a formal verification tool is presented.</description><subject>Acoustic emission</subject><subject>Aspect ratio</subject><subject>Bandpass</subject><subject>Carbon nanotubes</subject><subject>Chemical bonds</subject><subject>Converters</subject><subject>Damping</subject><subject>Direct current</subject><subject>gap reduction</subject><subject>Graphene</subject><subject>microelectromechanical step‐up converter</subject><subject>Microelectromechanical systems</subject><subject>Micromachining</subject><subject>micromechanical bandpass</subject><subject>Miniaturization</subject><subject>Nanoelectromechanical systems</subject><subject>Performance enhancement</subject><subject>Power consumption</subject><subject>Properties (attributes)</subject><subject>Reactive ion etching</subject><subject>Sensitivity</subject><subject>Verification</subject><subject>VHDL</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUxoMoOKdXzwGv6_aSdml6HNOpsE1h6sVDSNNkZHRNbVrG_nszNubRy_seP77v8fgQuicwJAB0VHsvhxQIB-AxuUA9whmNWEyyy_MOcI1uvN8AJOMkJT30_ai9XVcDvHCFLm21HuCZzBurZGtdwLIq8JdurDkR7Axe6h1edGVrTVepA5QlXjwtVqNlGHjqtrWrdNX6W3RlZOn13Un76HP29DF9ieZvz6_TyTxSMUlJxAwtKONcmiKjAKB1kjCi0lQpyCjLZBASiOZ5bhRPpWQ5NTymKsuBqTjuo4fj3bpxP532rdi4rglfeUFjGIfTKc-Ca3h0qcZ532gj6sZuZbMXBMShQHEoUJwLDIHsGNjZUu__cYv31Wryl_0F2kFz5w</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Freitag, Markus</creator><creator>Sauppe, Matthias</creator><creator>Auerswald, Christian</creator><creator>Kriebel, David</creator><creator>Schmidt, Henry</creator><creator>Voigt, Sebastian</creator><creator>Arnold, Benjamin</creator><creator>Markert, Erik</creator><creator>Hahn, Susann</creator><creator>Hiller, Karla</creator><creator>Heinkel, Ulrich</creator><creator>Mehner, Jan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0328-8842</orcidid></search><sort><creationdate>201910</creationdate><title>Design, Modeling, Fabrication, and Verification of New Multifunctional MEMS/NEMS Components</title><author>Freitag, Markus ; Sauppe, Matthias ; Auerswald, Christian ; Kriebel, David ; Schmidt, Henry ; Voigt, Sebastian ; Arnold, Benjamin ; Markert, Erik ; Hahn, Susann ; Hiller, Karla ; Heinkel, Ulrich ; Mehner, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3171-6f2d2688afd92000ee4461c77cc09269ac091461e8bbfc87aa6b2f832c9b06c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic emission</topic><topic>Aspect ratio</topic><topic>Bandpass</topic><topic>Carbon nanotubes</topic><topic>Chemical bonds</topic><topic>Converters</topic><topic>Damping</topic><topic>Direct current</topic><topic>gap reduction</topic><topic>Graphene</topic><topic>microelectromechanical step‐up converter</topic><topic>Microelectromechanical systems</topic><topic>Micromachining</topic><topic>micromechanical bandpass</topic><topic>Miniaturization</topic><topic>Nanoelectromechanical systems</topic><topic>Performance enhancement</topic><topic>Power consumption</topic><topic>Properties (attributes)</topic><topic>Reactive ion etching</topic><topic>Sensitivity</topic><topic>Verification</topic><topic>VHDL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freitag, Markus</creatorcontrib><creatorcontrib>Sauppe, Matthias</creatorcontrib><creatorcontrib>Auerswald, Christian</creatorcontrib><creatorcontrib>Kriebel, David</creatorcontrib><creatorcontrib>Schmidt, Henry</creatorcontrib><creatorcontrib>Voigt, Sebastian</creatorcontrib><creatorcontrib>Arnold, Benjamin</creatorcontrib><creatorcontrib>Markert, Erik</creatorcontrib><creatorcontrib>Hahn, Susann</creatorcontrib><creatorcontrib>Hiller, Karla</creatorcontrib><creatorcontrib>Heinkel, Ulrich</creatorcontrib><creatorcontrib>Mehner, Jan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freitag, Markus</au><au>Sauppe, Matthias</au><au>Auerswald, Christian</au><au>Kriebel, David</au><au>Schmidt, Henry</au><au>Voigt, Sebastian</au><au>Arnold, Benjamin</au><au>Markert, Erik</au><au>Hahn, Susann</au><au>Hiller, Karla</au><au>Heinkel, Ulrich</au><au>Mehner, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, Modeling, Fabrication, and Verification of New Multifunctional MEMS/NEMS Components</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2019-10</date><risdate>2019</risdate><volume>216</volume><issue>19</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>The development of a new sensor generation with a significant performance gain is mainly aimed at increasing the sensitivity. In addition to that, a variety of properties such as integrability, power consumption, robustness, reliability, cross‐talk sensitivity, and others, can be equally important. Some properties scale directly with sensitivity, whereas others show trade‐off characteristics. An overview of different approaches for new sensor generations with enhanced performance is presented and discussed in this article. The main focus is on new microelectromechanical systems (MEMS) elements, fabricated within a standard high‐aspect‐ratio micromachining process and capacitive working principle. Herein, a novel MEMS‐based bandpass, a gap reduction technique, fluted electrodes for reduced damping, and a novel direct current/direct current (DC/DC) converter, is proposed. Acoustic emission sensing is chosen as example application to underline the challenging requirements for the design. Furthermore, the recent improvements in technology are presented. Based on bonding and deep reactive ion etching (BDRIE), it allows larger aspect ratios as well as through‐silicon vias and low‐pressure encapsulation. Consistent further miniaturization leads to the use of nanoscopic elements within MEMS as sensing component instead of the conventional electrostatic working principle. Unique properties of graphene rolls or carbon nanotubes (CNTs) enable promising sensitivity improvements if they are integrated at wafer‐level. Therefore, a design concept and formal verification‐tool is presented. An overview of different approaches for new electrostatic sensor generations with enhanced performance is presented and discussed in this article. A novel microelectromechanical systems (MEMS) bandpass, a gap reduction technique, fluted electrodes for reduced damping, and a novel DC/DC converter, are presented. For the use of nanoscopic elements within MEMS as sensing component, a formal verification tool is presented.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201800831</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0328-8842</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2019-10, Vol.216 (19), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2305688789
source Access via Wiley Online Library
subjects Acoustic emission
Aspect ratio
Bandpass
Carbon nanotubes
Chemical bonds
Converters
Damping
Direct current
gap reduction
Graphene
microelectromechanical step‐up converter
Microelectromechanical systems
Micromachining
micromechanical bandpass
Miniaturization
Nanoelectromechanical systems
Performance enhancement
Power consumption
Properties (attributes)
Reactive ion etching
Sensitivity
Verification
VHDL
title Design, Modeling, Fabrication, and Verification of New Multifunctional MEMS/NEMS Components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20Modeling,%20Fabrication,%20and%20Verification%20of%20New%20Multifunctional%20MEMS/NEMS%20Components&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Freitag,%20Markus&rft.date=2019-10&rft.volume=216&rft.issue=19&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201800831&rft_dat=%3Cproquest_cross%3E2305688789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305688789&rft_id=info:pmid/&rfr_iscdi=true