Robust Incremental State Estimation through Covariance Adaptation

Recent advances in the fields of robotics and automation have spurred significant interest in robust state estimation. To enable robust state estimation, several methodologies have been proposed. One such technique, which has shown promising performance, is the concept of iteratively estimating a Ga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-10
Hauptverfasser: Watson, Ryan M, Gross, Jason N, Taylor, Clark N, Leishman, Robert C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Watson, Ryan M
Gross, Jason N
Taylor, Clark N
Leishman, Robert C
description Recent advances in the fields of robotics and automation have spurred significant interest in robust state estimation. To enable robust state estimation, several methodologies have been proposed. One such technique, which has shown promising performance, is the concept of iteratively estimating a Gaussian Mixture Model (GMM), based upon the state estimation residuals, to characterize the measurement uncertainty model. Through this iterative process, the measurement uncertainty model is more accurately characterized, which enables robust state estimation through the appropriate de-weighting of erroneous observations. This approach, however, has traditionally required a batch estimation framework to enable the estimation of the measurement uncertainty model, which is not advantageous to robotic applications. In this paper, we propose an efficient, incremental extension to the measurement uncertainty model estimation paradigm. The incremental covariance estimation (ICE) approach, as detailed within this paper, is evaluated on several collected data sets, where it is shown to provide a significant increase in localization accuracy when compared to other state-of-the-art robust, incremental estimation algorithms.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2305674217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305674217</sourcerecordid><originalsourceid>FETCH-proquest_journals_23056742173</originalsourceid><addsrcrecordid>eNqNytEKgjAUgOERBEn5DoOuhXmmrlsRo26reznZSkU32856_iJ6gK7-i-9fsAikTJNdBrBisfeDEAIKBXkuI1ae7DV44kfTOj1pQzjyMyFpXnvqJ6TeGk6ds-HR8cq-0PVoWs3LG8701Q1b3nH0Ov51zbb7-lIdktnZZ9CemsEGZz7UgBR5oTJIlfzvegOyuzng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305674217</pqid></control><display><type>article</type><title>Robust Incremental State Estimation through Covariance Adaptation</title><source>Free E- Journals</source><creator>Watson, Ryan M ; Gross, Jason N ; Taylor, Clark N ; Leishman, Robert C</creator><creatorcontrib>Watson, Ryan M ; Gross, Jason N ; Taylor, Clark N ; Leishman, Robert C</creatorcontrib><description>Recent advances in the fields of robotics and automation have spurred significant interest in robust state estimation. To enable robust state estimation, several methodologies have been proposed. One such technique, which has shown promising performance, is the concept of iteratively estimating a Gaussian Mixture Model (GMM), based upon the state estimation residuals, to characterize the measurement uncertainty model. Through this iterative process, the measurement uncertainty model is more accurately characterized, which enables robust state estimation through the appropriate de-weighting of erroneous observations. This approach, however, has traditionally required a batch estimation framework to enable the estimation of the measurement uncertainty model, which is not advantageous to robotic applications. In this paper, we propose an efficient, incremental extension to the measurement uncertainty model estimation paradigm. The incremental covariance estimation (ICE) approach, as detailed within this paper, is evaluated on several collected data sets, where it is shown to provide a significant increase in localization accuracy when compared to other state-of-the-art robust, incremental estimation algorithms.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Covariance ; Iterative methods ; Observational weighting ; Probabilistic models ; Robotics ; Robustness ; State estimation ; Uncertainty</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Watson, Ryan M</creatorcontrib><creatorcontrib>Gross, Jason N</creatorcontrib><creatorcontrib>Taylor, Clark N</creatorcontrib><creatorcontrib>Leishman, Robert C</creatorcontrib><title>Robust Incremental State Estimation through Covariance Adaptation</title><title>arXiv.org</title><description>Recent advances in the fields of robotics and automation have spurred significant interest in robust state estimation. To enable robust state estimation, several methodologies have been proposed. One such technique, which has shown promising performance, is the concept of iteratively estimating a Gaussian Mixture Model (GMM), based upon the state estimation residuals, to characterize the measurement uncertainty model. Through this iterative process, the measurement uncertainty model is more accurately characterized, which enables robust state estimation through the appropriate de-weighting of erroneous observations. This approach, however, has traditionally required a batch estimation framework to enable the estimation of the measurement uncertainty model, which is not advantageous to robotic applications. In this paper, we propose an efficient, incremental extension to the measurement uncertainty model estimation paradigm. The incremental covariance estimation (ICE) approach, as detailed within this paper, is evaluated on several collected data sets, where it is shown to provide a significant increase in localization accuracy when compared to other state-of-the-art robust, incremental estimation algorithms.</description><subject>Algorithms</subject><subject>Covariance</subject><subject>Iterative methods</subject><subject>Observational weighting</subject><subject>Probabilistic models</subject><subject>Robotics</subject><subject>Robustness</subject><subject>State estimation</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNytEKgjAUgOERBEn5DoOuhXmmrlsRo26reznZSkU32856_iJ6gK7-i-9fsAikTJNdBrBisfeDEAIKBXkuI1ae7DV44kfTOj1pQzjyMyFpXnvqJ6TeGk6ds-HR8cq-0PVoWs3LG8701Q1b3nH0Ov51zbb7-lIdktnZZ9CemsEGZz7UgBR5oTJIlfzvegOyuzng</recordid><startdate>20191011</startdate><enddate>20191011</enddate><creator>Watson, Ryan M</creator><creator>Gross, Jason N</creator><creator>Taylor, Clark N</creator><creator>Leishman, Robert C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191011</creationdate><title>Robust Incremental State Estimation through Covariance Adaptation</title><author>Watson, Ryan M ; Gross, Jason N ; Taylor, Clark N ; Leishman, Robert C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23056742173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Covariance</topic><topic>Iterative methods</topic><topic>Observational weighting</topic><topic>Probabilistic models</topic><topic>Robotics</topic><topic>Robustness</topic><topic>State estimation</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Watson, Ryan M</creatorcontrib><creatorcontrib>Gross, Jason N</creatorcontrib><creatorcontrib>Taylor, Clark N</creatorcontrib><creatorcontrib>Leishman, Robert C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watson, Ryan M</au><au>Gross, Jason N</au><au>Taylor, Clark N</au><au>Leishman, Robert C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Robust Incremental State Estimation through Covariance Adaptation</atitle><jtitle>arXiv.org</jtitle><date>2019-10-11</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Recent advances in the fields of robotics and automation have spurred significant interest in robust state estimation. To enable robust state estimation, several methodologies have been proposed. One such technique, which has shown promising performance, is the concept of iteratively estimating a Gaussian Mixture Model (GMM), based upon the state estimation residuals, to characterize the measurement uncertainty model. Through this iterative process, the measurement uncertainty model is more accurately characterized, which enables robust state estimation through the appropriate de-weighting of erroneous observations. This approach, however, has traditionally required a batch estimation framework to enable the estimation of the measurement uncertainty model, which is not advantageous to robotic applications. In this paper, we propose an efficient, incremental extension to the measurement uncertainty model estimation paradigm. The incremental covariance estimation (ICE) approach, as detailed within this paper, is evaluated on several collected data sets, where it is shown to provide a significant increase in localization accuracy when compared to other state-of-the-art robust, incremental estimation algorithms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2305674217
source Free E- Journals
subjects Algorithms
Covariance
Iterative methods
Observational weighting
Probabilistic models
Robotics
Robustness
State estimation
Uncertainty
title Robust Incremental State Estimation through Covariance Adaptation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T00%3A03%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Robust%20Incremental%20State%20Estimation%20through%20Covariance%20Adaptation&rft.jtitle=arXiv.org&rft.au=Watson,%20Ryan%20M&rft.date=2019-10-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2305674217%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305674217&rft_id=info:pmid/&rfr_iscdi=true