Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals
For the electrochemical reduction of CO 2 (CRR) with high selectivity for HCOOH, In–Zn bimetallic nanocrystals (NCs) were synthesized as catalysts by in situ reduction of In 2 O 3 –ZnO NCs with various compositions. All In-containing bimetallic catalysts exhibited excellent selectivity to produce HC...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (40), p.22879-22883 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22883 |
---|---|
container_issue | 40 |
container_start_page | 22879 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 7 |
creator | Kwon, Ik Seon Debela, Tekalign Terfa Kwak, In Hye Seo, Hee Won Park, Kidong Kim, Doyeon Yoo, Seung Jo Kim, Jin-Gyu Park, Jeunghee Kang, Hong Seok |
description | For the electrochemical reduction of CO
2
(CRR) with high selectivity for HCOOH, In–Zn bimetallic nanocrystals (NCs) were synthesized as catalysts by
in situ
reduction of In
2
O
3
–ZnO NCs with various compositions. All In-containing bimetallic catalysts exhibited excellent selectivity to produce HCOOH, while Zn NCs favor CO production. A composition with In : Zn = 0.05 has higher catalytic activity than In NCs, with a faradaic efficiency of 95% and a HCOOH production rate of 0.40 mmol h
−1
cm
−2
at −1.2 V
vs.
RHE. The enhanced catalytic performance is in part ascribed to the fewer surface oxide layers, which increase the conductivity and facilitate the charge transfer. Density functional theory calculations revealed that the In–Zn interfacial sites make the HCOOH pathway significantly energy-favorable, which supports the higher production rate of Zn
0.95
In
0.05
than that of In. |
doi_str_mv | 10.1039/C9TA06285H |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2305481213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305481213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-3364ae3bde069e8997ec822dacd604563152797fdd7f783d6df7b52025b2d6393</originalsourceid><addsrcrecordid>eNpFkM1KAzEUhYMoWGo3PkHAnTCaSSZ_y1LUCgUX1vWQyY-mzExqMiPWle_gG_okRit6N-dc7se9lwPAaYkuSkTk5UKu54hhQZcHYIIRRQWvJDv880Icg1lKG5RLIMSknIDtvW2tHvyLhT8mBv1kO69VC6M1Y56EHgYHtYpNdsaHV28sHAJ0IWYOKu0NHJPvH6HvjR-7z_ePN99r2PjODqptM9OrPui4S7lNJ-DIZbGzX52Ch-ur9WJZrO5ubhfzVaGxZENBCKuUJY2x-U8rpORWC4yN0oahijJSUswld8ZwxwUxzDjeUIwwbbBhRJIpONvv3cbwPNo01Jswxj6frDFBtBIlLkmmzveUjiGlaF29jb5TcVeXqP4Otf4PlXwBDxxr3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305481213</pqid></control><display><type>article</type><title>Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kwon, Ik Seon ; Debela, Tekalign Terfa ; Kwak, In Hye ; Seo, Hee Won ; Park, Kidong ; Kim, Doyeon ; Yoo, Seung Jo ; Kim, Jin-Gyu ; Park, Jeunghee ; Kang, Hong Seok</creator><creatorcontrib>Kwon, Ik Seon ; Debela, Tekalign Terfa ; Kwak, In Hye ; Seo, Hee Won ; Park, Kidong ; Kim, Doyeon ; Yoo, Seung Jo ; Kim, Jin-Gyu ; Park, Jeunghee ; Kang, Hong Seok</creatorcontrib><description>For the electrochemical reduction of CO
2
(CRR) with high selectivity for HCOOH, In–Zn bimetallic nanocrystals (NCs) were synthesized as catalysts by
in situ
reduction of In
2
O
3
–ZnO NCs with various compositions. All In-containing bimetallic catalysts exhibited excellent selectivity to produce HCOOH, while Zn NCs favor CO production. A composition with In : Zn = 0.05 has higher catalytic activity than In NCs, with a faradaic efficiency of 95% and a HCOOH production rate of 0.40 mmol h
−1
cm
−2
at −1.2 V
vs.
RHE. The enhanced catalytic performance is in part ascribed to the fewer surface oxide layers, which increase the conductivity and facilitate the charge transfer. Density functional theory calculations revealed that the In–Zn interfacial sites make the HCOOH pathway significantly energy-favorable, which supports the higher production rate of Zn
0.95
In
0.05
than that of In.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C9TA06285H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bimetals ; Carbon dioxide ; Catalysts ; Catalytic activity ; Charge density ; Charge transfer ; Chemical reduction ; Chemical synthesis ; Composition ; Crystals ; Density functional theory ; Electrochemistry ; Formic acid ; Indium ; Indium oxides ; Nanocrystals ; Selectivity ; Zinc ; Zinc oxide</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (40), p.22879-22883</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-3364ae3bde069e8997ec822dacd604563152797fdd7f783d6df7b52025b2d6393</citedby><cites>FETCH-LOGICAL-c296t-3364ae3bde069e8997ec822dacd604563152797fdd7f783d6df7b52025b2d6393</cites><orcidid>0000-0003-4697-0566 ; 0000-0002-0762-2529 ; 0000-0003-4859-2597 ; 0000-0002-0312-5672 ; 0000-0002-7190-2437 ; 0000-0002-8458-5776 ; 0000-0003-0611-2276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Kwon, Ik Seon</creatorcontrib><creatorcontrib>Debela, Tekalign Terfa</creatorcontrib><creatorcontrib>Kwak, In Hye</creatorcontrib><creatorcontrib>Seo, Hee Won</creatorcontrib><creatorcontrib>Park, Kidong</creatorcontrib><creatorcontrib>Kim, Doyeon</creatorcontrib><creatorcontrib>Yoo, Seung Jo</creatorcontrib><creatorcontrib>Kim, Jin-Gyu</creatorcontrib><creatorcontrib>Park, Jeunghee</creatorcontrib><creatorcontrib>Kang, Hong Seok</creatorcontrib><title>Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>For the electrochemical reduction of CO
2
(CRR) with high selectivity for HCOOH, In–Zn bimetallic nanocrystals (NCs) were synthesized as catalysts by
in situ
reduction of In
2
O
3
–ZnO NCs with various compositions. All In-containing bimetallic catalysts exhibited excellent selectivity to produce HCOOH, while Zn NCs favor CO production. A composition with In : Zn = 0.05 has higher catalytic activity than In NCs, with a faradaic efficiency of 95% and a HCOOH production rate of 0.40 mmol h
−1
cm
−2
at −1.2 V
vs.
RHE. The enhanced catalytic performance is in part ascribed to the fewer surface oxide layers, which increase the conductivity and facilitate the charge transfer. Density functional theory calculations revealed that the In–Zn interfacial sites make the HCOOH pathway significantly energy-favorable, which supports the higher production rate of Zn
0.95
In
0.05
than that of In.</description><subject>Bimetals</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Charge density</subject><subject>Charge transfer</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Composition</subject><subject>Crystals</subject><subject>Density functional theory</subject><subject>Electrochemistry</subject><subject>Formic acid</subject><subject>Indium</subject><subject>Indium oxides</subject><subject>Nanocrystals</subject><subject>Selectivity</subject><subject>Zinc</subject><subject>Zinc oxide</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkM1KAzEUhYMoWGo3PkHAnTCaSSZ_y1LUCgUX1vWQyY-mzExqMiPWle_gG_okRit6N-dc7se9lwPAaYkuSkTk5UKu54hhQZcHYIIRRQWvJDv880Icg1lKG5RLIMSknIDtvW2tHvyLhT8mBv1kO69VC6M1Y56EHgYHtYpNdsaHV28sHAJ0IWYOKu0NHJPvH6HvjR-7z_ePN99r2PjODqptM9OrPui4S7lNJ-DIZbGzX52Ch-ur9WJZrO5ubhfzVaGxZENBCKuUJY2x-U8rpORWC4yN0oahijJSUswld8ZwxwUxzDjeUIwwbbBhRJIpONvv3cbwPNo01Jswxj6frDFBtBIlLkmmzveUjiGlaF29jb5TcVeXqP4Otf4PlXwBDxxr3A</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kwon, Ik Seon</creator><creator>Debela, Tekalign Terfa</creator><creator>Kwak, In Hye</creator><creator>Seo, Hee Won</creator><creator>Park, Kidong</creator><creator>Kim, Doyeon</creator><creator>Yoo, Seung Jo</creator><creator>Kim, Jin-Gyu</creator><creator>Park, Jeunghee</creator><creator>Kang, Hong Seok</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4697-0566</orcidid><orcidid>https://orcid.org/0000-0002-0762-2529</orcidid><orcidid>https://orcid.org/0000-0003-4859-2597</orcidid><orcidid>https://orcid.org/0000-0002-0312-5672</orcidid><orcidid>https://orcid.org/0000-0002-7190-2437</orcidid><orcidid>https://orcid.org/0000-0002-8458-5776</orcidid><orcidid>https://orcid.org/0000-0003-0611-2276</orcidid></search><sort><creationdate>2019</creationdate><title>Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals</title><author>Kwon, Ik Seon ; Debela, Tekalign Terfa ; Kwak, In Hye ; Seo, Hee Won ; Park, Kidong ; Kim, Doyeon ; Yoo, Seung Jo ; Kim, Jin-Gyu ; Park, Jeunghee ; Kang, Hong Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-3364ae3bde069e8997ec822dacd604563152797fdd7f783d6df7b52025b2d6393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bimetals</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Charge density</topic><topic>Charge transfer</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Composition</topic><topic>Crystals</topic><topic>Density functional theory</topic><topic>Electrochemistry</topic><topic>Formic acid</topic><topic>Indium</topic><topic>Indium oxides</topic><topic>Nanocrystals</topic><topic>Selectivity</topic><topic>Zinc</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Ik Seon</creatorcontrib><creatorcontrib>Debela, Tekalign Terfa</creatorcontrib><creatorcontrib>Kwak, In Hye</creatorcontrib><creatorcontrib>Seo, Hee Won</creatorcontrib><creatorcontrib>Park, Kidong</creatorcontrib><creatorcontrib>Kim, Doyeon</creatorcontrib><creatorcontrib>Yoo, Seung Jo</creatorcontrib><creatorcontrib>Kim, Jin-Gyu</creatorcontrib><creatorcontrib>Park, Jeunghee</creatorcontrib><creatorcontrib>Kang, Hong Seok</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Ik Seon</au><au>Debela, Tekalign Terfa</au><au>Kwak, In Hye</au><au>Seo, Hee Won</au><au>Park, Kidong</au><au>Kim, Doyeon</au><au>Yoo, Seung Jo</au><au>Kim, Jin-Gyu</au><au>Park, Jeunghee</au><au>Kang, Hong Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>40</issue><spage>22879</spage><epage>22883</epage><pages>22879-22883</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>For the electrochemical reduction of CO
2
(CRR) with high selectivity for HCOOH, In–Zn bimetallic nanocrystals (NCs) were synthesized as catalysts by
in situ
reduction of In
2
O
3
–ZnO NCs with various compositions. All In-containing bimetallic catalysts exhibited excellent selectivity to produce HCOOH, while Zn NCs favor CO production. A composition with In : Zn = 0.05 has higher catalytic activity than In NCs, with a faradaic efficiency of 95% and a HCOOH production rate of 0.40 mmol h
−1
cm
−2
at −1.2 V
vs.
RHE. The enhanced catalytic performance is in part ascribed to the fewer surface oxide layers, which increase the conductivity and facilitate the charge transfer. Density functional theory calculations revealed that the In–Zn interfacial sites make the HCOOH pathway significantly energy-favorable, which supports the higher production rate of Zn
0.95
In
0.05
than that of In.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9TA06285H</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4697-0566</orcidid><orcidid>https://orcid.org/0000-0002-0762-2529</orcidid><orcidid>https://orcid.org/0000-0003-4859-2597</orcidid><orcidid>https://orcid.org/0000-0002-0312-5672</orcidid><orcidid>https://orcid.org/0000-0002-7190-2437</orcidid><orcidid>https://orcid.org/0000-0002-8458-5776</orcidid><orcidid>https://orcid.org/0000-0003-0611-2276</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (40), p.22879-22883 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2305481213 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Bimetals Carbon dioxide Catalysts Catalytic activity Charge density Charge transfer Chemical reduction Chemical synthesis Composition Crystals Density functional theory Electrochemistry Formic acid Indium Indium oxides Nanocrystals Selectivity Zinc Zinc oxide |
title | Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20electrochemical%20reduction%20of%20carbon%20dioxide%20to%20formic%20acid%20using%20indium%E2%80%93zinc%20bimetallic%20nanocrystals&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Kwon,%20Ik%20Seon&rft.date=2019&rft.volume=7&rft.issue=40&rft.spage=22879&rft.epage=22883&rft.pages=22879-22883&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C9TA06285H&rft_dat=%3Cproquest_cross%3E2305481213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305481213&rft_id=info:pmid/&rfr_iscdi=true |