Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals

For the electrochemical reduction of CO 2 (CRR) with high selectivity for HCOOH, In–Zn bimetallic nanocrystals (NCs) were synthesized as catalysts by in situ reduction of In 2 O 3 –ZnO NCs with various compositions. All In-containing bimetallic catalysts exhibited excellent selectivity to produce HC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (40), p.22879-22883
Hauptverfasser: Kwon, Ik Seon, Debela, Tekalign Terfa, Kwak, In Hye, Seo, Hee Won, Park, Kidong, Kim, Doyeon, Yoo, Seung Jo, Kim, Jin-Gyu, Park, Jeunghee, Kang, Hong Seok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22883
container_issue 40
container_start_page 22879
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Kwon, Ik Seon
Debela, Tekalign Terfa
Kwak, In Hye
Seo, Hee Won
Park, Kidong
Kim, Doyeon
Yoo, Seung Jo
Kim, Jin-Gyu
Park, Jeunghee
Kang, Hong Seok
description For the electrochemical reduction of CO 2 (CRR) with high selectivity for HCOOH, In–Zn bimetallic nanocrystals (NCs) were synthesized as catalysts by in situ reduction of In 2 O 3 –ZnO NCs with various compositions. All In-containing bimetallic catalysts exhibited excellent selectivity to produce HCOOH, while Zn NCs favor CO production. A composition with In : Zn = 0.05 has higher catalytic activity than In NCs, with a faradaic efficiency of 95% and a HCOOH production rate of 0.40 mmol h −1 cm −2 at −1.2 V vs. RHE. The enhanced catalytic performance is in part ascribed to the fewer surface oxide layers, which increase the conductivity and facilitate the charge transfer. Density functional theory calculations revealed that the In–Zn interfacial sites make the HCOOH pathway significantly energy-favorable, which supports the higher production rate of Zn 0.95 In 0.05 than that of In.
doi_str_mv 10.1039/C9TA06285H
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2305481213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305481213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-3364ae3bde069e8997ec822dacd604563152797fdd7f783d6df7b52025b2d6393</originalsourceid><addsrcrecordid>eNpFkM1KAzEUhYMoWGo3PkHAnTCaSSZ_y1LUCgUX1vWQyY-mzExqMiPWle_gG_okRit6N-dc7se9lwPAaYkuSkTk5UKu54hhQZcHYIIRRQWvJDv880Icg1lKG5RLIMSknIDtvW2tHvyLhT8mBv1kO69VC6M1Y56EHgYHtYpNdsaHV28sHAJ0IWYOKu0NHJPvH6HvjR-7z_ePN99r2PjODqptM9OrPui4S7lNJ-DIZbGzX52Ch-ur9WJZrO5ubhfzVaGxZENBCKuUJY2x-U8rpORWC4yN0oahijJSUswld8ZwxwUxzDjeUIwwbbBhRJIpONvv3cbwPNo01Jswxj6frDFBtBIlLkmmzveUjiGlaF29jb5TcVeXqP4Otf4PlXwBDxxr3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305481213</pqid></control><display><type>article</type><title>Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kwon, Ik Seon ; Debela, Tekalign Terfa ; Kwak, In Hye ; Seo, Hee Won ; Park, Kidong ; Kim, Doyeon ; Yoo, Seung Jo ; Kim, Jin-Gyu ; Park, Jeunghee ; Kang, Hong Seok</creator><creatorcontrib>Kwon, Ik Seon ; Debela, Tekalign Terfa ; Kwak, In Hye ; Seo, Hee Won ; Park, Kidong ; Kim, Doyeon ; Yoo, Seung Jo ; Kim, Jin-Gyu ; Park, Jeunghee ; Kang, Hong Seok</creatorcontrib><description>For the electrochemical reduction of CO 2 (CRR) with high selectivity for HCOOH, In–Zn bimetallic nanocrystals (NCs) were synthesized as catalysts by in situ reduction of In 2 O 3 –ZnO NCs with various compositions. All In-containing bimetallic catalysts exhibited excellent selectivity to produce HCOOH, while Zn NCs favor CO production. A composition with In : Zn = 0.05 has higher catalytic activity than In NCs, with a faradaic efficiency of 95% and a HCOOH production rate of 0.40 mmol h −1 cm −2 at −1.2 V vs. RHE. The enhanced catalytic performance is in part ascribed to the fewer surface oxide layers, which increase the conductivity and facilitate the charge transfer. Density functional theory calculations revealed that the In–Zn interfacial sites make the HCOOH pathway significantly energy-favorable, which supports the higher production rate of Zn 0.95 In 0.05 than that of In.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C9TA06285H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bimetals ; Carbon dioxide ; Catalysts ; Catalytic activity ; Charge density ; Charge transfer ; Chemical reduction ; Chemical synthesis ; Composition ; Crystals ; Density functional theory ; Electrochemistry ; Formic acid ; Indium ; Indium oxides ; Nanocrystals ; Selectivity ; Zinc ; Zinc oxide</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (40), p.22879-22883</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-3364ae3bde069e8997ec822dacd604563152797fdd7f783d6df7b52025b2d6393</citedby><cites>FETCH-LOGICAL-c296t-3364ae3bde069e8997ec822dacd604563152797fdd7f783d6df7b52025b2d6393</cites><orcidid>0000-0003-4697-0566 ; 0000-0002-0762-2529 ; 0000-0003-4859-2597 ; 0000-0002-0312-5672 ; 0000-0002-7190-2437 ; 0000-0002-8458-5776 ; 0000-0003-0611-2276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Kwon, Ik Seon</creatorcontrib><creatorcontrib>Debela, Tekalign Terfa</creatorcontrib><creatorcontrib>Kwak, In Hye</creatorcontrib><creatorcontrib>Seo, Hee Won</creatorcontrib><creatorcontrib>Park, Kidong</creatorcontrib><creatorcontrib>Kim, Doyeon</creatorcontrib><creatorcontrib>Yoo, Seung Jo</creatorcontrib><creatorcontrib>Kim, Jin-Gyu</creatorcontrib><creatorcontrib>Park, Jeunghee</creatorcontrib><creatorcontrib>Kang, Hong Seok</creatorcontrib><title>Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>For the electrochemical reduction of CO 2 (CRR) with high selectivity for HCOOH, In–Zn bimetallic nanocrystals (NCs) were synthesized as catalysts by in situ reduction of In 2 O 3 –ZnO NCs with various compositions. All In-containing bimetallic catalysts exhibited excellent selectivity to produce HCOOH, while Zn NCs favor CO production. A composition with In : Zn = 0.05 has higher catalytic activity than In NCs, with a faradaic efficiency of 95% and a HCOOH production rate of 0.40 mmol h −1 cm −2 at −1.2 V vs. RHE. The enhanced catalytic performance is in part ascribed to the fewer surface oxide layers, which increase the conductivity and facilitate the charge transfer. Density functional theory calculations revealed that the In–Zn interfacial sites make the HCOOH pathway significantly energy-favorable, which supports the higher production rate of Zn 0.95 In 0.05 than that of In.</description><subject>Bimetals</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Charge density</subject><subject>Charge transfer</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Composition</subject><subject>Crystals</subject><subject>Density functional theory</subject><subject>Electrochemistry</subject><subject>Formic acid</subject><subject>Indium</subject><subject>Indium oxides</subject><subject>Nanocrystals</subject><subject>Selectivity</subject><subject>Zinc</subject><subject>Zinc oxide</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkM1KAzEUhYMoWGo3PkHAnTCaSSZ_y1LUCgUX1vWQyY-mzExqMiPWle_gG_okRit6N-dc7se9lwPAaYkuSkTk5UKu54hhQZcHYIIRRQWvJDv880Icg1lKG5RLIMSknIDtvW2tHvyLhT8mBv1kO69VC6M1Y56EHgYHtYpNdsaHV28sHAJ0IWYOKu0NHJPvH6HvjR-7z_ePN99r2PjODqptM9OrPui4S7lNJ-DIZbGzX52Ch-ur9WJZrO5ubhfzVaGxZENBCKuUJY2x-U8rpORWC4yN0oahijJSUswld8ZwxwUxzDjeUIwwbbBhRJIpONvv3cbwPNo01Jswxj6frDFBtBIlLkmmzveUjiGlaF29jb5TcVeXqP4Otf4PlXwBDxxr3A</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kwon, Ik Seon</creator><creator>Debela, Tekalign Terfa</creator><creator>Kwak, In Hye</creator><creator>Seo, Hee Won</creator><creator>Park, Kidong</creator><creator>Kim, Doyeon</creator><creator>Yoo, Seung Jo</creator><creator>Kim, Jin-Gyu</creator><creator>Park, Jeunghee</creator><creator>Kang, Hong Seok</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4697-0566</orcidid><orcidid>https://orcid.org/0000-0002-0762-2529</orcidid><orcidid>https://orcid.org/0000-0003-4859-2597</orcidid><orcidid>https://orcid.org/0000-0002-0312-5672</orcidid><orcidid>https://orcid.org/0000-0002-7190-2437</orcidid><orcidid>https://orcid.org/0000-0002-8458-5776</orcidid><orcidid>https://orcid.org/0000-0003-0611-2276</orcidid></search><sort><creationdate>2019</creationdate><title>Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals</title><author>Kwon, Ik Seon ; Debela, Tekalign Terfa ; Kwak, In Hye ; Seo, Hee Won ; Park, Kidong ; Kim, Doyeon ; Yoo, Seung Jo ; Kim, Jin-Gyu ; Park, Jeunghee ; Kang, Hong Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-3364ae3bde069e8997ec822dacd604563152797fdd7f783d6df7b52025b2d6393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bimetals</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Charge density</topic><topic>Charge transfer</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Composition</topic><topic>Crystals</topic><topic>Density functional theory</topic><topic>Electrochemistry</topic><topic>Formic acid</topic><topic>Indium</topic><topic>Indium oxides</topic><topic>Nanocrystals</topic><topic>Selectivity</topic><topic>Zinc</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Ik Seon</creatorcontrib><creatorcontrib>Debela, Tekalign Terfa</creatorcontrib><creatorcontrib>Kwak, In Hye</creatorcontrib><creatorcontrib>Seo, Hee Won</creatorcontrib><creatorcontrib>Park, Kidong</creatorcontrib><creatorcontrib>Kim, Doyeon</creatorcontrib><creatorcontrib>Yoo, Seung Jo</creatorcontrib><creatorcontrib>Kim, Jin-Gyu</creatorcontrib><creatorcontrib>Park, Jeunghee</creatorcontrib><creatorcontrib>Kang, Hong Seok</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Ik Seon</au><au>Debela, Tekalign Terfa</au><au>Kwak, In Hye</au><au>Seo, Hee Won</au><au>Park, Kidong</au><au>Kim, Doyeon</au><au>Yoo, Seung Jo</au><au>Kim, Jin-Gyu</au><au>Park, Jeunghee</au><au>Kang, Hong Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>40</issue><spage>22879</spage><epage>22883</epage><pages>22879-22883</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>For the electrochemical reduction of CO 2 (CRR) with high selectivity for HCOOH, In–Zn bimetallic nanocrystals (NCs) were synthesized as catalysts by in situ reduction of In 2 O 3 –ZnO NCs with various compositions. All In-containing bimetallic catalysts exhibited excellent selectivity to produce HCOOH, while Zn NCs favor CO production. A composition with In : Zn = 0.05 has higher catalytic activity than In NCs, with a faradaic efficiency of 95% and a HCOOH production rate of 0.40 mmol h −1 cm −2 at −1.2 V vs. RHE. The enhanced catalytic performance is in part ascribed to the fewer surface oxide layers, which increase the conductivity and facilitate the charge transfer. Density functional theory calculations revealed that the In–Zn interfacial sites make the HCOOH pathway significantly energy-favorable, which supports the higher production rate of Zn 0.95 In 0.05 than that of In.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9TA06285H</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4697-0566</orcidid><orcidid>https://orcid.org/0000-0002-0762-2529</orcidid><orcidid>https://orcid.org/0000-0003-4859-2597</orcidid><orcidid>https://orcid.org/0000-0002-0312-5672</orcidid><orcidid>https://orcid.org/0000-0002-7190-2437</orcidid><orcidid>https://orcid.org/0000-0002-8458-5776</orcidid><orcidid>https://orcid.org/0000-0003-0611-2276</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (40), p.22879-22883
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2305481213
source Royal Society Of Chemistry Journals 2008-
subjects Bimetals
Carbon dioxide
Catalysts
Catalytic activity
Charge density
Charge transfer
Chemical reduction
Chemical synthesis
Composition
Crystals
Density functional theory
Electrochemistry
Formic acid
Indium
Indium oxides
Nanocrystals
Selectivity
Zinc
Zinc oxide
title Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20electrochemical%20reduction%20of%20carbon%20dioxide%20to%20formic%20acid%20using%20indium%E2%80%93zinc%20bimetallic%20nanocrystals&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Kwon,%20Ik%20Seon&rft.date=2019&rft.volume=7&rft.issue=40&rft.spage=22879&rft.epage=22883&rft.pages=22879-22883&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C9TA06285H&rft_dat=%3Cproquest_cross%3E2305481213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305481213&rft_id=info:pmid/&rfr_iscdi=true