Carbon-assisted catalyst pretreatment enables straightforward synthesis of high-density carbon nanotube forests
Despite extensive academic and commercial development, a comprehensive understanding of the principles necessary for high-yield production of carbon nanotubes (CNTs) is lacking, whether in oriented films, bulk powders, or other forms. In chemical vapor deposition growth of CNT films on substrates, t...
Gespeichert in:
Veröffentlicht in: | Carbon 2019-11, Vol.153 (11, 2019), p.196-205 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | 11, 2019 |
container_start_page | 196 |
container_title | Carbon |
container_volume | 153 |
creator | Dee, Nicholas T. Li, Jinjing Orbaek White, Alvin Jacob, Christine Shi, Wenbo Kidambi, Piran R. Cui, Kehang Zakharov, Dmitri N. Janković, Nina Z. Bedewy, Mostafa Chazot, Cécile A.C. Carpena-Núñez, Jennifer Maruyama, Benji Stach, Eric A. Plata, Desiree L. Hart, A. John |
description | Despite extensive academic and commercial development, a comprehensive understanding of the principles necessary for high-yield production of carbon nanotubes (CNTs) is lacking, whether in oriented films, bulk powders, or other forms. In chemical vapor deposition growth of CNT films on substrates, trace contaminants of carbon, such as deposits on the reactor tube walls, are known to cause inconsistency in key production metrics, including CNT density and alignment. In this study, we show that trace exposure of the catalyst to carbon during initial heating of the catalyst film is a critical determinant of CNT yield, and this carbon exposure accelerates catalyst nanoparticle formation via film dewetting and increases the probability of CNT nucleation and the resultant density of the CNT population. By controlled exposure of the catalyst to a trace amount of carbon, we show up to a 4-fold increase in bulk mass density for a given forest height, an 8-fold increase in local CNT number density, and a 2-fold increase in the growth lifetime, relative to a reference condition. We discuss potential mechanisms to explain the role of carbon exposure on the probability of CNT nucleation from nanoparticle catalysts, supported by microscopy and gas analysis.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2019.06.083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2304109632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622319306591</els_id><sourcerecordid>2304109632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-b2f1824b07427a1ab7a3112056195d3f26d595137887acbdba7e44253dee4e623</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVpoNsk3yAH0Z7t6J8t-1IoS9MEArkkZyFL46yWjbTVaFv221eue85pGOb9Hm8eITectZzx_nbfOpunFFvB-NiyvmWD_EA2fNCykcPIP5INY2xoeiHkJ_IZcV9XNXC1IWn7j2wsYsACnjpb7OGMhR4zlAy2vEEsFKKdDoAUS7bhdVfmlP_Y7CmeY9lBRWma6a5eGg8RQznTNRGNNqZymoBWArDgFbmY7QHh-v-8JC93P563983j08-H7ffHxnWclWYSMx-EmphWQltuJ20l54J1PR87L2fR-27suNTDoK2b_GQ1KCU66QEU9EJeki-rb8ISDLpQwO1cihFcMbzTolO6ir6uomNOv041ntmnU441lxGSKc7GXi5WalW5nBAzzOaYw5vNZ8OZWfo3e7N-a5b-DetN7b9i31YM6pu_A-QlBUQHPuQlhE_hfYO_2jyR-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2304109632</pqid></control><display><type>article</type><title>Carbon-assisted catalyst pretreatment enables straightforward synthesis of high-density carbon nanotube forests</title><source>Elsevier ScienceDirect Journals</source><creator>Dee, Nicholas T. ; Li, Jinjing ; Orbaek White, Alvin ; Jacob, Christine ; Shi, Wenbo ; Kidambi, Piran R. ; Cui, Kehang ; Zakharov, Dmitri N. ; Janković, Nina Z. ; Bedewy, Mostafa ; Chazot, Cécile A.C. ; Carpena-Núñez, Jennifer ; Maruyama, Benji ; Stach, Eric A. ; Plata, Desiree L. ; Hart, A. John</creator><creatorcontrib>Dee, Nicholas T. ; Li, Jinjing ; Orbaek White, Alvin ; Jacob, Christine ; Shi, Wenbo ; Kidambi, Piran R. ; Cui, Kehang ; Zakharov, Dmitri N. ; Janković, Nina Z. ; Bedewy, Mostafa ; Chazot, Cécile A.C. ; Carpena-Núñez, Jennifer ; Maruyama, Benji ; Stach, Eric A. ; Plata, Desiree L. ; Hart, A. John ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Despite extensive academic and commercial development, a comprehensive understanding of the principles necessary for high-yield production of carbon nanotubes (CNTs) is lacking, whether in oriented films, bulk powders, or other forms. In chemical vapor deposition growth of CNT films on substrates, trace contaminants of carbon, such as deposits on the reactor tube walls, are known to cause inconsistency in key production metrics, including CNT density and alignment. In this study, we show that trace exposure of the catalyst to carbon during initial heating of the catalyst film is a critical determinant of CNT yield, and this carbon exposure accelerates catalyst nanoparticle formation via film dewetting and increases the probability of CNT nucleation and the resultant density of the CNT population. By controlled exposure of the catalyst to a trace amount of carbon, we show up to a 4-fold increase in bulk mass density for a given forest height, an 8-fold increase in local CNT number density, and a 2-fold increase in the growth lifetime, relative to a reference condition. We discuss potential mechanisms to explain the role of carbon exposure on the probability of CNT nucleation from nanoparticle catalysts, supported by microscopy and gas analysis.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2019.06.083</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Bulk density ; Carbon ; Carbon nanotubes ; Catalysts ; Chemical synthesis ; Chemical vapor deposition ; Drying ; Exposure ; Gas analysis ; Nanoparticles ; Nanotubes ; Nucleation ; Organic chemistry ; Pretreatment ; Substrates ; Trace contaminants</subject><ispartof>Carbon, 2019-11, Vol.153 (11, 2019), p.196-205</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-b2f1824b07427a1ab7a3112056195d3f26d595137887acbdba7e44253dee4e623</citedby><cites>FETCH-LOGICAL-c510t-b2f1824b07427a1ab7a3112056195d3f26d595137887acbdba7e44253dee4e623</cites><orcidid>0000-0001-6338-5970 ; 0000-0002-8633-3564 ; 0000-0001-5519-9932 ; 0000-0002-7372-3512 ; 0000-0003-4182-7533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2019.06.083$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1572547$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dee, Nicholas T.</creatorcontrib><creatorcontrib>Li, Jinjing</creatorcontrib><creatorcontrib>Orbaek White, Alvin</creatorcontrib><creatorcontrib>Jacob, Christine</creatorcontrib><creatorcontrib>Shi, Wenbo</creatorcontrib><creatorcontrib>Kidambi, Piran R.</creatorcontrib><creatorcontrib>Cui, Kehang</creatorcontrib><creatorcontrib>Zakharov, Dmitri N.</creatorcontrib><creatorcontrib>Janković, Nina Z.</creatorcontrib><creatorcontrib>Bedewy, Mostafa</creatorcontrib><creatorcontrib>Chazot, Cécile A.C.</creatorcontrib><creatorcontrib>Carpena-Núñez, Jennifer</creatorcontrib><creatorcontrib>Maruyama, Benji</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Plata, Desiree L.</creatorcontrib><creatorcontrib>Hart, A. John</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Carbon-assisted catalyst pretreatment enables straightforward synthesis of high-density carbon nanotube forests</title><title>Carbon</title><description>Despite extensive academic and commercial development, a comprehensive understanding of the principles necessary for high-yield production of carbon nanotubes (CNTs) is lacking, whether in oriented films, bulk powders, or other forms. In chemical vapor deposition growth of CNT films on substrates, trace contaminants of carbon, such as deposits on the reactor tube walls, are known to cause inconsistency in key production metrics, including CNT density and alignment. In this study, we show that trace exposure of the catalyst to carbon during initial heating of the catalyst film is a critical determinant of CNT yield, and this carbon exposure accelerates catalyst nanoparticle formation via film dewetting and increases the probability of CNT nucleation and the resultant density of the CNT population. By controlled exposure of the catalyst to a trace amount of carbon, we show up to a 4-fold increase in bulk mass density for a given forest height, an 8-fold increase in local CNT number density, and a 2-fold increase in the growth lifetime, relative to a reference condition. We discuss potential mechanisms to explain the role of carbon exposure on the probability of CNT nucleation from nanoparticle catalysts, supported by microscopy and gas analysis.
[Display omitted]</description><subject>Bulk density</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>Drying</subject><subject>Exposure</subject><subject>Gas analysis</subject><subject>Nanoparticles</subject><subject>Nanotubes</subject><subject>Nucleation</subject><subject>Organic chemistry</subject><subject>Pretreatment</subject><subject>Substrates</subject><subject>Trace contaminants</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVpoNsk3yAH0Z7t6J8t-1IoS9MEArkkZyFL46yWjbTVaFv221eue85pGOb9Hm8eITectZzx_nbfOpunFFvB-NiyvmWD_EA2fNCykcPIP5INY2xoeiHkJ_IZcV9XNXC1IWn7j2wsYsACnjpb7OGMhR4zlAy2vEEsFKKdDoAUS7bhdVfmlP_Y7CmeY9lBRWma6a5eGg8RQznTNRGNNqZymoBWArDgFbmY7QHh-v-8JC93P563983j08-H7ffHxnWclWYSMx-EmphWQltuJ20l54J1PR87L2fR-27suNTDoK2b_GQ1KCU66QEU9EJeki-rb8ISDLpQwO1cihFcMbzTolO6ir6uomNOv041ntmnU441lxGSKc7GXi5WalW5nBAzzOaYw5vNZ8OZWfo3e7N-a5b-DetN7b9i31YM6pu_A-QlBUQHPuQlhE_hfYO_2jyR-g</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Dee, Nicholas T.</creator><creator>Li, Jinjing</creator><creator>Orbaek White, Alvin</creator><creator>Jacob, Christine</creator><creator>Shi, Wenbo</creator><creator>Kidambi, Piran R.</creator><creator>Cui, Kehang</creator><creator>Zakharov, Dmitri N.</creator><creator>Janković, Nina Z.</creator><creator>Bedewy, Mostafa</creator><creator>Chazot, Cécile A.C.</creator><creator>Carpena-Núñez, Jennifer</creator><creator>Maruyama, Benji</creator><creator>Stach, Eric A.</creator><creator>Plata, Desiree L.</creator><creator>Hart, A. John</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6338-5970</orcidid><orcidid>https://orcid.org/0000-0002-8633-3564</orcidid><orcidid>https://orcid.org/0000-0001-5519-9932</orcidid><orcidid>https://orcid.org/0000-0002-7372-3512</orcidid><orcidid>https://orcid.org/0000-0003-4182-7533</orcidid></search><sort><creationdate>20191101</creationdate><title>Carbon-assisted catalyst pretreatment enables straightforward synthesis of high-density carbon nanotube forests</title><author>Dee, Nicholas T. ; Li, Jinjing ; Orbaek White, Alvin ; Jacob, Christine ; Shi, Wenbo ; Kidambi, Piran R. ; Cui, Kehang ; Zakharov, Dmitri N. ; Janković, Nina Z. ; Bedewy, Mostafa ; Chazot, Cécile A.C. ; Carpena-Núñez, Jennifer ; Maruyama, Benji ; Stach, Eric A. ; Plata, Desiree L. ; Hart, A. John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-b2f1824b07427a1ab7a3112056195d3f26d595137887acbdba7e44253dee4e623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bulk density</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>Drying</topic><topic>Exposure</topic><topic>Gas analysis</topic><topic>Nanoparticles</topic><topic>Nanotubes</topic><topic>Nucleation</topic><topic>Organic chemistry</topic><topic>Pretreatment</topic><topic>Substrates</topic><topic>Trace contaminants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dee, Nicholas T.</creatorcontrib><creatorcontrib>Li, Jinjing</creatorcontrib><creatorcontrib>Orbaek White, Alvin</creatorcontrib><creatorcontrib>Jacob, Christine</creatorcontrib><creatorcontrib>Shi, Wenbo</creatorcontrib><creatorcontrib>Kidambi, Piran R.</creatorcontrib><creatorcontrib>Cui, Kehang</creatorcontrib><creatorcontrib>Zakharov, Dmitri N.</creatorcontrib><creatorcontrib>Janković, Nina Z.</creatorcontrib><creatorcontrib>Bedewy, Mostafa</creatorcontrib><creatorcontrib>Chazot, Cécile A.C.</creatorcontrib><creatorcontrib>Carpena-Núñez, Jennifer</creatorcontrib><creatorcontrib>Maruyama, Benji</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Plata, Desiree L.</creatorcontrib><creatorcontrib>Hart, A. John</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Carbon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dee, Nicholas T.</au><au>Li, Jinjing</au><au>Orbaek White, Alvin</au><au>Jacob, Christine</au><au>Shi, Wenbo</au><au>Kidambi, Piran R.</au><au>Cui, Kehang</au><au>Zakharov, Dmitri N.</au><au>Janković, Nina Z.</au><au>Bedewy, Mostafa</au><au>Chazot, Cécile A.C.</au><au>Carpena-Núñez, Jennifer</au><au>Maruyama, Benji</au><au>Stach, Eric A.</au><au>Plata, Desiree L.</au><au>Hart, A. John</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon-assisted catalyst pretreatment enables straightforward synthesis of high-density carbon nanotube forests</atitle><jtitle>Carbon</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>153</volume><issue>11, 2019</issue><spage>196</spage><epage>205</epage><pages>196-205</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Despite extensive academic and commercial development, a comprehensive understanding of the principles necessary for high-yield production of carbon nanotubes (CNTs) is lacking, whether in oriented films, bulk powders, or other forms. In chemical vapor deposition growth of CNT films on substrates, trace contaminants of carbon, such as deposits on the reactor tube walls, are known to cause inconsistency in key production metrics, including CNT density and alignment. In this study, we show that trace exposure of the catalyst to carbon during initial heating of the catalyst film is a critical determinant of CNT yield, and this carbon exposure accelerates catalyst nanoparticle formation via film dewetting and increases the probability of CNT nucleation and the resultant density of the CNT population. By controlled exposure of the catalyst to a trace amount of carbon, we show up to a 4-fold increase in bulk mass density for a given forest height, an 8-fold increase in local CNT number density, and a 2-fold increase in the growth lifetime, relative to a reference condition. We discuss potential mechanisms to explain the role of carbon exposure on the probability of CNT nucleation from nanoparticle catalysts, supported by microscopy and gas analysis.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2019.06.083</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6338-5970</orcidid><orcidid>https://orcid.org/0000-0002-8633-3564</orcidid><orcidid>https://orcid.org/0000-0001-5519-9932</orcidid><orcidid>https://orcid.org/0000-0002-7372-3512</orcidid><orcidid>https://orcid.org/0000-0003-4182-7533</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon, 2019-11, Vol.153 (11, 2019), p.196-205 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2304109632 |
source | Elsevier ScienceDirect Journals |
subjects | Bulk density Carbon Carbon nanotubes Catalysts Chemical synthesis Chemical vapor deposition Drying Exposure Gas analysis Nanoparticles Nanotubes Nucleation Organic chemistry Pretreatment Substrates Trace contaminants |
title | Carbon-assisted catalyst pretreatment enables straightforward synthesis of high-density carbon nanotube forests |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon-assisted%20catalyst%20pretreatment%20enables%20straightforward%20synthesis%20of%20high-density%20carbon%20nanotube%20forests&rft.jtitle=Carbon&rft.au=Dee,%20Nicholas%20T.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2019-11-01&rft.volume=153&rft.issue=11,%202019&rft.spage=196&rft.epage=205&rft.pages=196-205&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2019.06.083&rft_dat=%3Cproquest_osti_%3E2304109632%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2304109632&rft_id=info:pmid/&rft_els_id=S0008622319306591&rfr_iscdi=true |