Carbon-assisted catalyst pretreatment enables straightforward synthesis of high-density carbon nanotube forests

Despite extensive academic and commercial development, a comprehensive understanding of the principles necessary for high-yield production of carbon nanotubes (CNTs) is lacking, whether in oriented films, bulk powders, or other forms. In chemical vapor deposition growth of CNT films on substrates, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon 2019-11, Vol.153 (11, 2019), p.196-205
Hauptverfasser: Dee, Nicholas T., Li, Jinjing, Orbaek White, Alvin, Jacob, Christine, Shi, Wenbo, Kidambi, Piran R., Cui, Kehang, Zakharov, Dmitri N., Janković, Nina Z., Bedewy, Mostafa, Chazot, Cécile A.C., Carpena-Núñez, Jennifer, Maruyama, Benji, Stach, Eric A., Plata, Desiree L., Hart, A. John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205
container_issue 11, 2019
container_start_page 196
container_title Carbon
container_volume 153
creator Dee, Nicholas T.
Li, Jinjing
Orbaek White, Alvin
Jacob, Christine
Shi, Wenbo
Kidambi, Piran R.
Cui, Kehang
Zakharov, Dmitri N.
Janković, Nina Z.
Bedewy, Mostafa
Chazot, Cécile A.C.
Carpena-Núñez, Jennifer
Maruyama, Benji
Stach, Eric A.
Plata, Desiree L.
Hart, A. John
description Despite extensive academic and commercial development, a comprehensive understanding of the principles necessary for high-yield production of carbon nanotubes (CNTs) is lacking, whether in oriented films, bulk powders, or other forms. In chemical vapor deposition growth of CNT films on substrates, trace contaminants of carbon, such as deposits on the reactor tube walls, are known to cause inconsistency in key production metrics, including CNT density and alignment. In this study, we show that trace exposure of the catalyst to carbon during initial heating of the catalyst film is a critical determinant of CNT yield, and this carbon exposure accelerates catalyst nanoparticle formation via film dewetting and increases the probability of CNT nucleation and the resultant density of the CNT population. By controlled exposure of the catalyst to a trace amount of carbon, we show up to a 4-fold increase in bulk mass density for a given forest height, an 8-fold increase in local CNT number density, and a 2-fold increase in the growth lifetime, relative to a reference condition. We discuss potential mechanisms to explain the role of carbon exposure on the probability of CNT nucleation from nanoparticle catalysts, supported by microscopy and gas analysis. [Display omitted]
doi_str_mv 10.1016/j.carbon.2019.06.083
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2304109632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622319306591</els_id><sourcerecordid>2304109632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-b2f1824b07427a1ab7a3112056195d3f26d595137887acbdba7e44253dee4e623</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVpoNsk3yAH0Z7t6J8t-1IoS9MEArkkZyFL46yWjbTVaFv221eue85pGOb9Hm8eITectZzx_nbfOpunFFvB-NiyvmWD_EA2fNCykcPIP5INY2xoeiHkJ_IZcV9XNXC1IWn7j2wsYsACnjpb7OGMhR4zlAy2vEEsFKKdDoAUS7bhdVfmlP_Y7CmeY9lBRWma6a5eGg8RQznTNRGNNqZymoBWArDgFbmY7QHh-v-8JC93P563983j08-H7ffHxnWclWYSMx-EmphWQltuJ20l54J1PR87L2fR-27suNTDoK2b_GQ1KCU66QEU9EJeki-rb8ISDLpQwO1cihFcMbzTolO6ir6uomNOv041ntmnU441lxGSKc7GXi5WalW5nBAzzOaYw5vNZ8OZWfo3e7N-a5b-DetN7b9i31YM6pu_A-QlBUQHPuQlhE_hfYO_2jyR-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2304109632</pqid></control><display><type>article</type><title>Carbon-assisted catalyst pretreatment enables straightforward synthesis of high-density carbon nanotube forests</title><source>Elsevier ScienceDirect Journals</source><creator>Dee, Nicholas T. ; Li, Jinjing ; Orbaek White, Alvin ; Jacob, Christine ; Shi, Wenbo ; Kidambi, Piran R. ; Cui, Kehang ; Zakharov, Dmitri N. ; Janković, Nina Z. ; Bedewy, Mostafa ; Chazot, Cécile A.C. ; Carpena-Núñez, Jennifer ; Maruyama, Benji ; Stach, Eric A. ; Plata, Desiree L. ; Hart, A. John</creator><creatorcontrib>Dee, Nicholas T. ; Li, Jinjing ; Orbaek White, Alvin ; Jacob, Christine ; Shi, Wenbo ; Kidambi, Piran R. ; Cui, Kehang ; Zakharov, Dmitri N. ; Janković, Nina Z. ; Bedewy, Mostafa ; Chazot, Cécile A.C. ; Carpena-Núñez, Jennifer ; Maruyama, Benji ; Stach, Eric A. ; Plata, Desiree L. ; Hart, A. John ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Despite extensive academic and commercial development, a comprehensive understanding of the principles necessary for high-yield production of carbon nanotubes (CNTs) is lacking, whether in oriented films, bulk powders, or other forms. In chemical vapor deposition growth of CNT films on substrates, trace contaminants of carbon, such as deposits on the reactor tube walls, are known to cause inconsistency in key production metrics, including CNT density and alignment. In this study, we show that trace exposure of the catalyst to carbon during initial heating of the catalyst film is a critical determinant of CNT yield, and this carbon exposure accelerates catalyst nanoparticle formation via film dewetting and increases the probability of CNT nucleation and the resultant density of the CNT population. By controlled exposure of the catalyst to a trace amount of carbon, we show up to a 4-fold increase in bulk mass density for a given forest height, an 8-fold increase in local CNT number density, and a 2-fold increase in the growth lifetime, relative to a reference condition. We discuss potential mechanisms to explain the role of carbon exposure on the probability of CNT nucleation from nanoparticle catalysts, supported by microscopy and gas analysis. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2019.06.083</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Bulk density ; Carbon ; Carbon nanotubes ; Catalysts ; Chemical synthesis ; Chemical vapor deposition ; Drying ; Exposure ; Gas analysis ; Nanoparticles ; Nanotubes ; Nucleation ; Organic chemistry ; Pretreatment ; Substrates ; Trace contaminants</subject><ispartof>Carbon, 2019-11, Vol.153 (11, 2019), p.196-205</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-b2f1824b07427a1ab7a3112056195d3f26d595137887acbdba7e44253dee4e623</citedby><cites>FETCH-LOGICAL-c510t-b2f1824b07427a1ab7a3112056195d3f26d595137887acbdba7e44253dee4e623</cites><orcidid>0000-0001-6338-5970 ; 0000-0002-8633-3564 ; 0000-0001-5519-9932 ; 0000-0002-7372-3512 ; 0000-0003-4182-7533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2019.06.083$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1572547$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dee, Nicholas T.</creatorcontrib><creatorcontrib>Li, Jinjing</creatorcontrib><creatorcontrib>Orbaek White, Alvin</creatorcontrib><creatorcontrib>Jacob, Christine</creatorcontrib><creatorcontrib>Shi, Wenbo</creatorcontrib><creatorcontrib>Kidambi, Piran R.</creatorcontrib><creatorcontrib>Cui, Kehang</creatorcontrib><creatorcontrib>Zakharov, Dmitri N.</creatorcontrib><creatorcontrib>Janković, Nina Z.</creatorcontrib><creatorcontrib>Bedewy, Mostafa</creatorcontrib><creatorcontrib>Chazot, Cécile A.C.</creatorcontrib><creatorcontrib>Carpena-Núñez, Jennifer</creatorcontrib><creatorcontrib>Maruyama, Benji</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Plata, Desiree L.</creatorcontrib><creatorcontrib>Hart, A. John</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Carbon-assisted catalyst pretreatment enables straightforward synthesis of high-density carbon nanotube forests</title><title>Carbon</title><description>Despite extensive academic and commercial development, a comprehensive understanding of the principles necessary for high-yield production of carbon nanotubes (CNTs) is lacking, whether in oriented films, bulk powders, or other forms. In chemical vapor deposition growth of CNT films on substrates, trace contaminants of carbon, such as deposits on the reactor tube walls, are known to cause inconsistency in key production metrics, including CNT density and alignment. In this study, we show that trace exposure of the catalyst to carbon during initial heating of the catalyst film is a critical determinant of CNT yield, and this carbon exposure accelerates catalyst nanoparticle formation via film dewetting and increases the probability of CNT nucleation and the resultant density of the CNT population. By controlled exposure of the catalyst to a trace amount of carbon, we show up to a 4-fold increase in bulk mass density for a given forest height, an 8-fold increase in local CNT number density, and a 2-fold increase in the growth lifetime, relative to a reference condition. We discuss potential mechanisms to explain the role of carbon exposure on the probability of CNT nucleation from nanoparticle catalysts, supported by microscopy and gas analysis. [Display omitted]</description><subject>Bulk density</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>Drying</subject><subject>Exposure</subject><subject>Gas analysis</subject><subject>Nanoparticles</subject><subject>Nanotubes</subject><subject>Nucleation</subject><subject>Organic chemistry</subject><subject>Pretreatment</subject><subject>Substrates</subject><subject>Trace contaminants</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVpoNsk3yAH0Z7t6J8t-1IoS9MEArkkZyFL46yWjbTVaFv221eue85pGOb9Hm8eITectZzx_nbfOpunFFvB-NiyvmWD_EA2fNCykcPIP5INY2xoeiHkJ_IZcV9XNXC1IWn7j2wsYsACnjpb7OGMhR4zlAy2vEEsFKKdDoAUS7bhdVfmlP_Y7CmeY9lBRWma6a5eGg8RQznTNRGNNqZymoBWArDgFbmY7QHh-v-8JC93P563983j08-H7ffHxnWclWYSMx-EmphWQltuJ20l54J1PR87L2fR-27suNTDoK2b_GQ1KCU66QEU9EJeki-rb8ISDLpQwO1cihFcMbzTolO6ir6uomNOv041ntmnU441lxGSKc7GXi5WalW5nBAzzOaYw5vNZ8OZWfo3e7N-a5b-DetN7b9i31YM6pu_A-QlBUQHPuQlhE_hfYO_2jyR-g</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Dee, Nicholas T.</creator><creator>Li, Jinjing</creator><creator>Orbaek White, Alvin</creator><creator>Jacob, Christine</creator><creator>Shi, Wenbo</creator><creator>Kidambi, Piran R.</creator><creator>Cui, Kehang</creator><creator>Zakharov, Dmitri N.</creator><creator>Janković, Nina Z.</creator><creator>Bedewy, Mostafa</creator><creator>Chazot, Cécile A.C.</creator><creator>Carpena-Núñez, Jennifer</creator><creator>Maruyama, Benji</creator><creator>Stach, Eric A.</creator><creator>Plata, Desiree L.</creator><creator>Hart, A. John</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6338-5970</orcidid><orcidid>https://orcid.org/0000-0002-8633-3564</orcidid><orcidid>https://orcid.org/0000-0001-5519-9932</orcidid><orcidid>https://orcid.org/0000-0002-7372-3512</orcidid><orcidid>https://orcid.org/0000-0003-4182-7533</orcidid></search><sort><creationdate>20191101</creationdate><title>Carbon-assisted catalyst pretreatment enables straightforward synthesis of high-density carbon nanotube forests</title><author>Dee, Nicholas T. ; Li, Jinjing ; Orbaek White, Alvin ; Jacob, Christine ; Shi, Wenbo ; Kidambi, Piran R. ; Cui, Kehang ; Zakharov, Dmitri N. ; Janković, Nina Z. ; Bedewy, Mostafa ; Chazot, Cécile A.C. ; Carpena-Núñez, Jennifer ; Maruyama, Benji ; Stach, Eric A. ; Plata, Desiree L. ; Hart, A. John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-b2f1824b07427a1ab7a3112056195d3f26d595137887acbdba7e44253dee4e623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bulk density</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>Drying</topic><topic>Exposure</topic><topic>Gas analysis</topic><topic>Nanoparticles</topic><topic>Nanotubes</topic><topic>Nucleation</topic><topic>Organic chemistry</topic><topic>Pretreatment</topic><topic>Substrates</topic><topic>Trace contaminants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dee, Nicholas T.</creatorcontrib><creatorcontrib>Li, Jinjing</creatorcontrib><creatorcontrib>Orbaek White, Alvin</creatorcontrib><creatorcontrib>Jacob, Christine</creatorcontrib><creatorcontrib>Shi, Wenbo</creatorcontrib><creatorcontrib>Kidambi, Piran R.</creatorcontrib><creatorcontrib>Cui, Kehang</creatorcontrib><creatorcontrib>Zakharov, Dmitri N.</creatorcontrib><creatorcontrib>Janković, Nina Z.</creatorcontrib><creatorcontrib>Bedewy, Mostafa</creatorcontrib><creatorcontrib>Chazot, Cécile A.C.</creatorcontrib><creatorcontrib>Carpena-Núñez, Jennifer</creatorcontrib><creatorcontrib>Maruyama, Benji</creatorcontrib><creatorcontrib>Stach, Eric A.</creatorcontrib><creatorcontrib>Plata, Desiree L.</creatorcontrib><creatorcontrib>Hart, A. John</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Carbon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dee, Nicholas T.</au><au>Li, Jinjing</au><au>Orbaek White, Alvin</au><au>Jacob, Christine</au><au>Shi, Wenbo</au><au>Kidambi, Piran R.</au><au>Cui, Kehang</au><au>Zakharov, Dmitri N.</au><au>Janković, Nina Z.</au><au>Bedewy, Mostafa</au><au>Chazot, Cécile A.C.</au><au>Carpena-Núñez, Jennifer</au><au>Maruyama, Benji</au><au>Stach, Eric A.</au><au>Plata, Desiree L.</au><au>Hart, A. John</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon-assisted catalyst pretreatment enables straightforward synthesis of high-density carbon nanotube forests</atitle><jtitle>Carbon</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>153</volume><issue>11, 2019</issue><spage>196</spage><epage>205</epage><pages>196-205</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Despite extensive academic and commercial development, a comprehensive understanding of the principles necessary for high-yield production of carbon nanotubes (CNTs) is lacking, whether in oriented films, bulk powders, or other forms. In chemical vapor deposition growth of CNT films on substrates, trace contaminants of carbon, such as deposits on the reactor tube walls, are known to cause inconsistency in key production metrics, including CNT density and alignment. In this study, we show that trace exposure of the catalyst to carbon during initial heating of the catalyst film is a critical determinant of CNT yield, and this carbon exposure accelerates catalyst nanoparticle formation via film dewetting and increases the probability of CNT nucleation and the resultant density of the CNT population. By controlled exposure of the catalyst to a trace amount of carbon, we show up to a 4-fold increase in bulk mass density for a given forest height, an 8-fold increase in local CNT number density, and a 2-fold increase in the growth lifetime, relative to a reference condition. We discuss potential mechanisms to explain the role of carbon exposure on the probability of CNT nucleation from nanoparticle catalysts, supported by microscopy and gas analysis. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2019.06.083</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6338-5970</orcidid><orcidid>https://orcid.org/0000-0002-8633-3564</orcidid><orcidid>https://orcid.org/0000-0001-5519-9932</orcidid><orcidid>https://orcid.org/0000-0002-7372-3512</orcidid><orcidid>https://orcid.org/0000-0003-4182-7533</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon, 2019-11, Vol.153 (11, 2019), p.196-205
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2304109632
source Elsevier ScienceDirect Journals
subjects Bulk density
Carbon
Carbon nanotubes
Catalysts
Chemical synthesis
Chemical vapor deposition
Drying
Exposure
Gas analysis
Nanoparticles
Nanotubes
Nucleation
Organic chemistry
Pretreatment
Substrates
Trace contaminants
title Carbon-assisted catalyst pretreatment enables straightforward synthesis of high-density carbon nanotube forests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon-assisted%20catalyst%20pretreatment%20enables%20straightforward%20synthesis%20of%20high-density%20carbon%20nanotube%20forests&rft.jtitle=Carbon&rft.au=Dee,%20Nicholas%20T.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2019-11-01&rft.volume=153&rft.issue=11,%202019&rft.spage=196&rft.epage=205&rft.pages=196-205&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2019.06.083&rft_dat=%3Cproquest_osti_%3E2304109632%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2304109632&rft_id=info:pmid/&rft_els_id=S0008622319306591&rfr_iscdi=true