Incorporating big microdata in life table construction: A hypothesis-free estimator
The IT revolution, now more than ever, offers a cheaper and faster way to collect, store, transmit and process data. Detailed microdata of dates of death, migration and birth are already becoming available for general populations. In this paper, we develop within the family of period-based estimator...
Gespeichert in:
Veröffentlicht in: | Insurance, mathematics & economics mathematics & economics, 2019-09, Vol.88, p.138-150 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | |
container_start_page | 138 |
container_title | Insurance, mathematics & economics |
container_volume | 88 |
creator | Lledó, Josep Pavía, Jose M. Morillas-Jurado, Francisco G. |
description | The IT revolution, now more than ever, offers a cheaper and faster way to collect, store, transmit and process data. Detailed microdata of dates of death, migration and birth are already becoming available for general populations. In this paper, we develop within the family of period-based estimators a new, assumption-free estimator for constructing life tables. The estimator proposed exploits all the detailed data available and is free of the theoretical inconsistencies that the estimators currently used by most official statistical agencies have. We compute the proposed estimator for a real database and test the suitability of the hypotheses on which the estimators used so far rely. The hypothesis of uniform distribution of birthdays is proven to be inadequate and the one having the largest impact on the estimated probabilities. Given its influence on public pension systems and life insurances, we advocate for adopting the more efficient approaches proposed in this paper. |
doi_str_mv | 10.1016/j.insmatheco.2019.06.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2304105077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668717305577</els_id><sourcerecordid>2304105077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-c8be5e96e8d0e16c52549986fad064448abf2d15a2befe6e544059ebf61140623</originalsourceid><addsrcrecordid>eNqFkE1LwzAYx4MoOKffIeC59UnbpKm3OXyDgQf1HNL06ZayNTXJhH17MyZ49PRcfs__jRDKIGfAxN2Q2zHsdNygcXkBrMlB5AD8jMyYrMuMN7w5J7OE1pkQsr4kVyEMAIkU9Yy8v47G-cl5He24pq1d05013nU6ampHurU90qjbLVLjxhD93kTrxnu6oJvD5JJtsCHrPSLFEG0K4vw1uej1NuDN752Tz6fHj-VLtnp7fl0uVpkpaxkzI1vk2AiUHSAThhe8ahopet2BqKpK6rYvOsZ10WKPAnlVAW-w7QVjFYiinJPbk-7k3dc-2avB7f2YLFVRQsWAQ10nSp6o1CoEj72afMrpD4qBOk6oBvU3oTpOqECoNGF6fTi9YmrxbdGrYCyOBjvr0UTVOfu_yA9bloBp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2304105077</pqid></control><display><type>article</type><title>Incorporating big microdata in life table construction: A hypothesis-free estimator</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lledó, Josep ; Pavía, Jose M. ; Morillas-Jurado, Francisco G.</creator><creatorcontrib>Lledó, Josep ; Pavía, Jose M. ; Morillas-Jurado, Francisco G.</creatorcontrib><description>The IT revolution, now more than ever, offers a cheaper and faster way to collect, store, transmit and process data. Detailed microdata of dates of death, migration and birth are already becoming available for general populations. In this paper, we develop within the family of period-based estimators a new, assumption-free estimator for constructing life tables. The estimator proposed exploits all the detailed data available and is free of the theoretical inconsistencies that the estimators currently used by most official statistical agencies have. We compute the proposed estimator for a real database and test the suitability of the hypotheses on which the estimators used so far rely. The hypothesis of uniform distribution of birthdays is proven to be inadequate and the one having the largest impact on the estimated probabilities. Given its influence on public pension systems and life insurances, we advocate for adopting the more efficient approaches proposed in this paper.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2019.06.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Big data ; Birthdays ; Date of births ; Estimating techniques ; Estimators ; Hypotheses ; Life tables ; Migration ; Pension plans ; Period-based estimators ; Rates of mortality ; Spain ; Statistical analysis ; Suitability ; Tables (data) ; Uniform distribution</subject><ispartof>Insurance, mathematics & economics, 2019-09, Vol.88, p.138-150</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-c8be5e96e8d0e16c52549986fad064448abf2d15a2befe6e544059ebf61140623</citedby><cites>FETCH-LOGICAL-c378t-c8be5e96e8d0e16c52549986fad064448abf2d15a2befe6e544059ebf61140623</cites><orcidid>0000-0002-7475-8549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2019.06.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Lledó, Josep</creatorcontrib><creatorcontrib>Pavía, Jose M.</creatorcontrib><creatorcontrib>Morillas-Jurado, Francisco G.</creatorcontrib><title>Incorporating big microdata in life table construction: A hypothesis-free estimator</title><title>Insurance, mathematics & economics</title><description>The IT revolution, now more than ever, offers a cheaper and faster way to collect, store, transmit and process data. Detailed microdata of dates of death, migration and birth are already becoming available for general populations. In this paper, we develop within the family of period-based estimators a new, assumption-free estimator for constructing life tables. The estimator proposed exploits all the detailed data available and is free of the theoretical inconsistencies that the estimators currently used by most official statistical agencies have. We compute the proposed estimator for a real database and test the suitability of the hypotheses on which the estimators used so far rely. The hypothesis of uniform distribution of birthdays is proven to be inadequate and the one having the largest impact on the estimated probabilities. Given its influence on public pension systems and life insurances, we advocate for adopting the more efficient approaches proposed in this paper.</description><subject>Asymptotic methods</subject><subject>Big data</subject><subject>Birthdays</subject><subject>Date of births</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Hypotheses</subject><subject>Life tables</subject><subject>Migration</subject><subject>Pension plans</subject><subject>Period-based estimators</subject><subject>Rates of mortality</subject><subject>Spain</subject><subject>Statistical analysis</subject><subject>Suitability</subject><subject>Tables (data)</subject><subject>Uniform distribution</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LwzAYx4MoOKffIeC59UnbpKm3OXyDgQf1HNL06ZayNTXJhH17MyZ49PRcfs__jRDKIGfAxN2Q2zHsdNygcXkBrMlB5AD8jMyYrMuMN7w5J7OE1pkQsr4kVyEMAIkU9Yy8v47G-cl5He24pq1d05013nU6ampHurU90qjbLVLjxhD93kTrxnu6oJvD5JJtsCHrPSLFEG0K4vw1uej1NuDN752Tz6fHj-VLtnp7fl0uVpkpaxkzI1vk2AiUHSAThhe8ahopet2BqKpK6rYvOsZ10WKPAnlVAW-w7QVjFYiinJPbk-7k3dc-2avB7f2YLFVRQsWAQ10nSp6o1CoEj72afMrpD4qBOk6oBvU3oTpOqECoNGF6fTi9YmrxbdGrYCyOBjvr0UTVOfu_yA9bloBp</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Lledó, Josep</creator><creator>Pavía, Jose M.</creator><creator>Morillas-Jurado, Francisco G.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-7475-8549</orcidid></search><sort><creationdate>20190901</creationdate><title>Incorporating big microdata in life table construction: A hypothesis-free estimator</title><author>Lledó, Josep ; Pavía, Jose M. ; Morillas-Jurado, Francisco G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-c8be5e96e8d0e16c52549986fad064448abf2d15a2befe6e544059ebf61140623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic methods</topic><topic>Big data</topic><topic>Birthdays</topic><topic>Date of births</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Hypotheses</topic><topic>Life tables</topic><topic>Migration</topic><topic>Pension plans</topic><topic>Period-based estimators</topic><topic>Rates of mortality</topic><topic>Spain</topic><topic>Statistical analysis</topic><topic>Suitability</topic><topic>Tables (data)</topic><topic>Uniform distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lledó, Josep</creatorcontrib><creatorcontrib>Pavía, Jose M.</creatorcontrib><creatorcontrib>Morillas-Jurado, Francisco G.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics & economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lledó, Josep</au><au>Pavía, Jose M.</au><au>Morillas-Jurado, Francisco G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating big microdata in life table construction: A hypothesis-free estimator</atitle><jtitle>Insurance, mathematics & economics</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>88</volume><spage>138</spage><epage>150</epage><pages>138-150</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><abstract>The IT revolution, now more than ever, offers a cheaper and faster way to collect, store, transmit and process data. Detailed microdata of dates of death, migration and birth are already becoming available for general populations. In this paper, we develop within the family of period-based estimators a new, assumption-free estimator for constructing life tables. The estimator proposed exploits all the detailed data available and is free of the theoretical inconsistencies that the estimators currently used by most official statistical agencies have. We compute the proposed estimator for a real database and test the suitability of the hypotheses on which the estimators used so far rely. The hypothesis of uniform distribution of birthdays is proven to be inadequate and the one having the largest impact on the estimated probabilities. Given its influence on public pension systems and life insurances, we advocate for adopting the more efficient approaches proposed in this paper.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2019.06.005</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7475-8549</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6687 |
ispartof | Insurance, mathematics & economics, 2019-09, Vol.88, p.138-150 |
issn | 0167-6687 1873-5959 |
language | eng |
recordid | cdi_proquest_journals_2304105077 |
source | Access via ScienceDirect (Elsevier) |
subjects | Asymptotic methods Big data Birthdays Date of births Estimating techniques Estimators Hypotheses Life tables Migration Pension plans Period-based estimators Rates of mortality Spain Statistical analysis Suitability Tables (data) Uniform distribution |
title | Incorporating big microdata in life table construction: A hypothesis-free estimator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20big%20microdata%20in%20life%20table%20construction:%20A%20hypothesis-free%20estimator&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Lled%C3%B3,%20Josep&rft.date=2019-09-01&rft.volume=88&rft.spage=138&rft.epage=150&rft.pages=138-150&rft.issn=0167-6687&rft.eissn=1873-5959&rft_id=info:doi/10.1016/j.insmatheco.2019.06.005&rft_dat=%3Cproquest_cross%3E2304105077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2304105077&rft_id=info:pmid/&rft_els_id=S0167668717305577&rfr_iscdi=true |