Fair valuation of insurance liability cash-flow streams in continuous time: Theory
We investigate fair (market-consistent and actuarial) valuation of insurance liability cash-flow streams in continuous time. We first consider one-period hedge-based valuations, where in the first step, an optimal dynamic hedge for the liability is set up, based on the assets traded in the market an...
Gespeichert in:
Veröffentlicht in: | Insurance, mathematics & economics mathematics & economics, 2019-09, Vol.88, p.196-208 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate fair (market-consistent and actuarial) valuation of insurance liability cash-flow streams in continuous time. We first consider one-period hedge-based valuations, where in the first step, an optimal dynamic hedge for the liability is set up, based on the assets traded in the market and a quadratic hedging objective, while in the second step, the remaining part of the claim is valuated via an actuarial valuation. Then, we extend this approach to a multi-period setting by backward iterations for a given discrete-time step h, and consider the continuous-time limit for h→0. We formally derive a partial differential equation for the valuation operator which satisfies the continuous-time limit of the multi-period, discrete-time iterations and prove that this valuation operator is actuarial and market-consistent. We show that our continuous-time fair valuation operator has a natural decomposition into the best estimate of the liability and a risk margin. The dynamic hedging strategy associated with the continuous-time fair valuation operator is also established. Finally, the valuation operator and the hedging strategy allow us to study the dynamics of the net asset value of the insurer. |
---|---|
ISSN: | 0167-6687 1873-5959 |
DOI: | 10.1016/j.insmatheco.2019.07.003 |