Confidence-rich grid mapping

Representing the environment is a fundamental task in enabling robots to act autonomously in unknown environments. In this work, we present confidence-rich mapping (CRM), a new algorithm for spatial grid-based mapping of the 3D environment. CRM augments the occupancy level at each voxel by its confi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2019-10, Vol.38 (12-13), p.1352-1374
Hauptverfasser: Agha-mohammadi, Ali-akbar, Heiden, Eric, Hausman, Karol, Sukhatme, Gaurav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1374
container_issue 12-13
container_start_page 1352
container_title The International journal of robotics research
container_volume 38
creator Agha-mohammadi, Ali-akbar
Heiden, Eric
Hausman, Karol
Sukhatme, Gaurav
description Representing the environment is a fundamental task in enabling robots to act autonomously in unknown environments. In this work, we present confidence-rich mapping (CRM), a new algorithm for spatial grid-based mapping of the 3D environment. CRM augments the occupancy level at each voxel by its confidence value. By explicitly storing and evolving confidence values using the CRM filter, CRM extends traditional grid mapping in three ways: first, it partially maintains the probabilistic dependence among voxels; second, it relaxes the need for hand-engineering an inverse sensor model and proposes the concept of sensor cause model that can be derived in a principled manner from the forward sensor model; third, and most importantly, it provides consistent confidence values over the occupancy estimation that can be reliably used in collision risk evaluation and motion planning. CRM runs online and enables mapping environments where voxels might be partially occupied. We demonstrate the performance of the method on various datasets and environments in simulation and on physical systems. We show in real-world experiments that, in addition to achieving maps that are more accurate than traditional methods, the proposed filtering scheme demonstrates a much higher level of consistency between its error and the reported confidence, hence, enabling a more reliable collision risk evaluation for motion planning.
doi_str_mv 10.1177/0278364919839762
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2304087557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364919839762</sage_id><sourcerecordid>2304087557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-1411052e34a5adf5144088c19ae874b81be1680d5724433feda4d10585c8cb593</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoWEf3LlwMuI6-1yRNspTiFwy40XVIk7R2cNqazCz896ZUEARXb3HPuQ8uIZcIN4hS3kIpFau4Rq2YllV5RAqUHClDWR2TYo7pnJ-Ss5S2AMAq0AW5qseh7X0YXKCxd-_rLvZ-vbPT1A_dOTlp7UcKFz93Rd4e7l_rJ7p5eXyu7zbUMa72FDkiiDIwboX1rUDOQSmH2gYleaOwCVgp8EKWnDPWBm-5z4YSTrlGaLYi10vvFMfPQ0h7sx0PccgvTckgl0khZKZgoVwcU4qhNVPsdzZ-GQQzb2D-bpAVuijJduG39F_-Gxt2WEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2304087557</pqid></control><display><type>article</type><title>Confidence-rich grid mapping</title><source>SAGE Complete</source><creator>Agha-mohammadi, Ali-akbar ; Heiden, Eric ; Hausman, Karol ; Sukhatme, Gaurav</creator><creatorcontrib>Agha-mohammadi, Ali-akbar ; Heiden, Eric ; Hausman, Karol ; Sukhatme, Gaurav</creatorcontrib><description>Representing the environment is a fundamental task in enabling robots to act autonomously in unknown environments. In this work, we present confidence-rich mapping (CRM), a new algorithm for spatial grid-based mapping of the 3D environment. CRM augments the occupancy level at each voxel by its confidence value. By explicitly storing and evolving confidence values using the CRM filter, CRM extends traditional grid mapping in three ways: first, it partially maintains the probabilistic dependence among voxels; second, it relaxes the need for hand-engineering an inverse sensor model and proposes the concept of sensor cause model that can be derived in a principled manner from the forward sensor model; third, and most importantly, it provides consistent confidence values over the occupancy estimation that can be reliably used in collision risk evaluation and motion planning. CRM runs online and enables mapping environments where voxels might be partially occupied. We demonstrate the performance of the method on various datasets and environments in simulation and on physical systems. We show in real-world experiments that, in addition to achieving maps that are more accurate than traditional methods, the proposed filtering scheme demonstrates a much higher level of consistency between its error and the reported confidence, hence, enabling a more reliable collision risk evaluation for motion planning.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364919839762</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Computer simulation ; Dependence ; Mapping ; Motion planning ; Occupancy ; Risk assessment ; Sensors ; Unknown environments</subject><ispartof>The International journal of robotics research, 2019-10, Vol.38 (12-13), p.1352-1374</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-1411052e34a5adf5144088c19ae874b81be1680d5724433feda4d10585c8cb593</citedby><cites>FETCH-LOGICAL-c348t-1411052e34a5adf5144088c19ae874b81be1680d5724433feda4d10585c8cb593</cites><orcidid>0000-0002-2031-8564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364919839762$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364919839762$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Agha-mohammadi, Ali-akbar</creatorcontrib><creatorcontrib>Heiden, Eric</creatorcontrib><creatorcontrib>Hausman, Karol</creatorcontrib><creatorcontrib>Sukhatme, Gaurav</creatorcontrib><title>Confidence-rich grid mapping</title><title>The International journal of robotics research</title><description>Representing the environment is a fundamental task in enabling robots to act autonomously in unknown environments. In this work, we present confidence-rich mapping (CRM), a new algorithm for spatial grid-based mapping of the 3D environment. CRM augments the occupancy level at each voxel by its confidence value. By explicitly storing and evolving confidence values using the CRM filter, CRM extends traditional grid mapping in three ways: first, it partially maintains the probabilistic dependence among voxels; second, it relaxes the need for hand-engineering an inverse sensor model and proposes the concept of sensor cause model that can be derived in a principled manner from the forward sensor model; third, and most importantly, it provides consistent confidence values over the occupancy estimation that can be reliably used in collision risk evaluation and motion planning. CRM runs online and enables mapping environments where voxels might be partially occupied. We demonstrate the performance of the method on various datasets and environments in simulation and on physical systems. We show in real-world experiments that, in addition to achieving maps that are more accurate than traditional methods, the proposed filtering scheme demonstrates a much higher level of consistency between its error and the reported confidence, hence, enabling a more reliable collision risk evaluation for motion planning.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Dependence</subject><subject>Mapping</subject><subject>Motion planning</subject><subject>Occupancy</subject><subject>Risk assessment</subject><subject>Sensors</subject><subject>Unknown environments</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoWEf3LlwMuI6-1yRNspTiFwy40XVIk7R2cNqazCz896ZUEARXb3HPuQ8uIZcIN4hS3kIpFau4Rq2YllV5RAqUHClDWR2TYo7pnJ-Ss5S2AMAq0AW5qseh7X0YXKCxd-_rLvZ-vbPT1A_dOTlp7UcKFz93Rd4e7l_rJ7p5eXyu7zbUMa72FDkiiDIwboX1rUDOQSmH2gYleaOwCVgp8EKWnDPWBm-5z4YSTrlGaLYi10vvFMfPQ0h7sx0PccgvTckgl0khZKZgoVwcU4qhNVPsdzZ-GQQzb2D-bpAVuijJduG39F_-Gxt2WEc</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Agha-mohammadi, Ali-akbar</creator><creator>Heiden, Eric</creator><creator>Hausman, Karol</creator><creator>Sukhatme, Gaurav</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2031-8564</orcidid></search><sort><creationdate>20191001</creationdate><title>Confidence-rich grid mapping</title><author>Agha-mohammadi, Ali-akbar ; Heiden, Eric ; Hausman, Karol ; Sukhatme, Gaurav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-1411052e34a5adf5144088c19ae874b81be1680d5724433feda4d10585c8cb593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Dependence</topic><topic>Mapping</topic><topic>Motion planning</topic><topic>Occupancy</topic><topic>Risk assessment</topic><topic>Sensors</topic><topic>Unknown environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agha-mohammadi, Ali-akbar</creatorcontrib><creatorcontrib>Heiden, Eric</creatorcontrib><creatorcontrib>Hausman, Karol</creatorcontrib><creatorcontrib>Sukhatme, Gaurav</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agha-mohammadi, Ali-akbar</au><au>Heiden, Eric</au><au>Hausman, Karol</au><au>Sukhatme, Gaurav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidence-rich grid mapping</atitle><jtitle>The International journal of robotics research</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>38</volume><issue>12-13</issue><spage>1352</spage><epage>1374</epage><pages>1352-1374</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>Representing the environment is a fundamental task in enabling robots to act autonomously in unknown environments. In this work, we present confidence-rich mapping (CRM), a new algorithm for spatial grid-based mapping of the 3D environment. CRM augments the occupancy level at each voxel by its confidence value. By explicitly storing and evolving confidence values using the CRM filter, CRM extends traditional grid mapping in three ways: first, it partially maintains the probabilistic dependence among voxels; second, it relaxes the need for hand-engineering an inverse sensor model and proposes the concept of sensor cause model that can be derived in a principled manner from the forward sensor model; third, and most importantly, it provides consistent confidence values over the occupancy estimation that can be reliably used in collision risk evaluation and motion planning. CRM runs online and enables mapping environments where voxels might be partially occupied. We demonstrate the performance of the method on various datasets and environments in simulation and on physical systems. We show in real-world experiments that, in addition to achieving maps that are more accurate than traditional methods, the proposed filtering scheme demonstrates a much higher level of consistency between its error and the reported confidence, hence, enabling a more reliable collision risk evaluation for motion planning.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364919839762</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2031-8564</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 2019-10, Vol.38 (12-13), p.1352-1374
issn 0278-3649
1741-3176
language eng
recordid cdi_proquest_journals_2304087557
source SAGE Complete
subjects Algorithms
Computer simulation
Dependence
Mapping
Motion planning
Occupancy
Risk assessment
Sensors
Unknown environments
title Confidence-rich grid mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidence-rich%20grid%20mapping&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Agha-mohammadi,%20Ali-akbar&rft.date=2019-10-01&rft.volume=38&rft.issue=12-13&rft.spage=1352&rft.epage=1374&rft.pages=1352-1374&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/0278364919839762&rft_dat=%3Cproquest_cross%3E2304087557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2304087557&rft_id=info:pmid/&rft_sage_id=10.1177_0278364919839762&rfr_iscdi=true