Confidence-rich grid mapping
Representing the environment is a fundamental task in enabling robots to act autonomously in unknown environments. In this work, we present confidence-rich mapping (CRM), a new algorithm for spatial grid-based mapping of the 3D environment. CRM augments the occupancy level at each voxel by its confi...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 2019-10, Vol.38 (12-13), p.1352-1374 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1374 |
---|---|
container_issue | 12-13 |
container_start_page | 1352 |
container_title | The International journal of robotics research |
container_volume | 38 |
creator | Agha-mohammadi, Ali-akbar Heiden, Eric Hausman, Karol Sukhatme, Gaurav |
description | Representing the environment is a fundamental task in enabling robots to act autonomously in unknown environments. In this work, we present confidence-rich mapping (CRM), a new algorithm for spatial grid-based mapping of the 3D environment. CRM augments the occupancy level at each voxel by its confidence value. By explicitly storing and evolving confidence values using the CRM filter, CRM extends traditional grid mapping in three ways: first, it partially maintains the probabilistic dependence among voxels; second, it relaxes the need for hand-engineering an inverse sensor model and proposes the concept of sensor cause model that can be derived in a principled manner from the forward sensor model; third, and most importantly, it provides consistent confidence values over the occupancy estimation that can be reliably used in collision risk evaluation and motion planning. CRM runs online and enables mapping environments where voxels might be partially occupied. We demonstrate the performance of the method on various datasets and environments in simulation and on physical systems. We show in real-world experiments that, in addition to achieving maps that are more accurate than traditional methods, the proposed filtering scheme demonstrates a much higher level of consistency between its error and the reported confidence, hence, enabling a more reliable collision risk evaluation for motion planning. |
doi_str_mv | 10.1177/0278364919839762 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2304087557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364919839762</sage_id><sourcerecordid>2304087557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-1411052e34a5adf5144088c19ae874b81be1680d5724433feda4d10585c8cb593</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoWEf3LlwMuI6-1yRNspTiFwy40XVIk7R2cNqazCz896ZUEARXb3HPuQ8uIZcIN4hS3kIpFau4Rq2YllV5RAqUHClDWR2TYo7pnJ-Ss5S2AMAq0AW5qseh7X0YXKCxd-_rLvZ-vbPT1A_dOTlp7UcKFz93Rd4e7l_rJ7p5eXyu7zbUMa72FDkiiDIwboX1rUDOQSmH2gYleaOwCVgp8EKWnDPWBm-5z4YSTrlGaLYi10vvFMfPQ0h7sx0PccgvTckgl0khZKZgoVwcU4qhNVPsdzZ-GQQzb2D-bpAVuijJduG39F_-Gxt2WEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2304087557</pqid></control><display><type>article</type><title>Confidence-rich grid mapping</title><source>SAGE Complete</source><creator>Agha-mohammadi, Ali-akbar ; Heiden, Eric ; Hausman, Karol ; Sukhatme, Gaurav</creator><creatorcontrib>Agha-mohammadi, Ali-akbar ; Heiden, Eric ; Hausman, Karol ; Sukhatme, Gaurav</creatorcontrib><description>Representing the environment is a fundamental task in enabling robots to act autonomously in unknown environments. In this work, we present confidence-rich mapping (CRM), a new algorithm for spatial grid-based mapping of the 3D environment. CRM augments the occupancy level at each voxel by its confidence value. By explicitly storing and evolving confidence values using the CRM filter, CRM extends traditional grid mapping in three ways: first, it partially maintains the probabilistic dependence among voxels; second, it relaxes the need for hand-engineering an inverse sensor model and proposes the concept of sensor cause model that can be derived in a principled manner from the forward sensor model; third, and most importantly, it provides consistent confidence values over the occupancy estimation that can be reliably used in collision risk evaluation and motion planning. CRM runs online and enables mapping environments where voxels might be partially occupied. We demonstrate the performance of the method on various datasets and environments in simulation and on physical systems. We show in real-world experiments that, in addition to achieving maps that are more accurate than traditional methods, the proposed filtering scheme demonstrates a much higher level of consistency between its error and the reported confidence, hence, enabling a more reliable collision risk evaluation for motion planning.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364919839762</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Computer simulation ; Dependence ; Mapping ; Motion planning ; Occupancy ; Risk assessment ; Sensors ; Unknown environments</subject><ispartof>The International journal of robotics research, 2019-10, Vol.38 (12-13), p.1352-1374</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-1411052e34a5adf5144088c19ae874b81be1680d5724433feda4d10585c8cb593</citedby><cites>FETCH-LOGICAL-c348t-1411052e34a5adf5144088c19ae874b81be1680d5724433feda4d10585c8cb593</cites><orcidid>0000-0002-2031-8564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364919839762$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364919839762$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Agha-mohammadi, Ali-akbar</creatorcontrib><creatorcontrib>Heiden, Eric</creatorcontrib><creatorcontrib>Hausman, Karol</creatorcontrib><creatorcontrib>Sukhatme, Gaurav</creatorcontrib><title>Confidence-rich grid mapping</title><title>The International journal of robotics research</title><description>Representing the environment is a fundamental task in enabling robots to act autonomously in unknown environments. In this work, we present confidence-rich mapping (CRM), a new algorithm for spatial grid-based mapping of the 3D environment. CRM augments the occupancy level at each voxel by its confidence value. By explicitly storing and evolving confidence values using the CRM filter, CRM extends traditional grid mapping in three ways: first, it partially maintains the probabilistic dependence among voxels; second, it relaxes the need for hand-engineering an inverse sensor model and proposes the concept of sensor cause model that can be derived in a principled manner from the forward sensor model; third, and most importantly, it provides consistent confidence values over the occupancy estimation that can be reliably used in collision risk evaluation and motion planning. CRM runs online and enables mapping environments where voxels might be partially occupied. We demonstrate the performance of the method on various datasets and environments in simulation and on physical systems. We show in real-world experiments that, in addition to achieving maps that are more accurate than traditional methods, the proposed filtering scheme demonstrates a much higher level of consistency between its error and the reported confidence, hence, enabling a more reliable collision risk evaluation for motion planning.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Dependence</subject><subject>Mapping</subject><subject>Motion planning</subject><subject>Occupancy</subject><subject>Risk assessment</subject><subject>Sensors</subject><subject>Unknown environments</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoWEf3LlwMuI6-1yRNspTiFwy40XVIk7R2cNqazCz896ZUEARXb3HPuQ8uIZcIN4hS3kIpFau4Rq2YllV5RAqUHClDWR2TYo7pnJ-Ss5S2AMAq0AW5qseh7X0YXKCxd-_rLvZ-vbPT1A_dOTlp7UcKFz93Rd4e7l_rJ7p5eXyu7zbUMa72FDkiiDIwboX1rUDOQSmH2gYleaOwCVgp8EKWnDPWBm-5z4YSTrlGaLYi10vvFMfPQ0h7sx0PccgvTckgl0khZKZgoVwcU4qhNVPsdzZ-GQQzb2D-bpAVuijJduG39F_-Gxt2WEc</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Agha-mohammadi, Ali-akbar</creator><creator>Heiden, Eric</creator><creator>Hausman, Karol</creator><creator>Sukhatme, Gaurav</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2031-8564</orcidid></search><sort><creationdate>20191001</creationdate><title>Confidence-rich grid mapping</title><author>Agha-mohammadi, Ali-akbar ; Heiden, Eric ; Hausman, Karol ; Sukhatme, Gaurav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-1411052e34a5adf5144088c19ae874b81be1680d5724433feda4d10585c8cb593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Dependence</topic><topic>Mapping</topic><topic>Motion planning</topic><topic>Occupancy</topic><topic>Risk assessment</topic><topic>Sensors</topic><topic>Unknown environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agha-mohammadi, Ali-akbar</creatorcontrib><creatorcontrib>Heiden, Eric</creatorcontrib><creatorcontrib>Hausman, Karol</creatorcontrib><creatorcontrib>Sukhatme, Gaurav</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agha-mohammadi, Ali-akbar</au><au>Heiden, Eric</au><au>Hausman, Karol</au><au>Sukhatme, Gaurav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidence-rich grid mapping</atitle><jtitle>The International journal of robotics research</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>38</volume><issue>12-13</issue><spage>1352</spage><epage>1374</epage><pages>1352-1374</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>Representing the environment is a fundamental task in enabling robots to act autonomously in unknown environments. In this work, we present confidence-rich mapping (CRM), a new algorithm for spatial grid-based mapping of the 3D environment. CRM augments the occupancy level at each voxel by its confidence value. By explicitly storing and evolving confidence values using the CRM filter, CRM extends traditional grid mapping in three ways: first, it partially maintains the probabilistic dependence among voxels; second, it relaxes the need for hand-engineering an inverse sensor model and proposes the concept of sensor cause model that can be derived in a principled manner from the forward sensor model; third, and most importantly, it provides consistent confidence values over the occupancy estimation that can be reliably used in collision risk evaluation and motion planning. CRM runs online and enables mapping environments where voxels might be partially occupied. We demonstrate the performance of the method on various datasets and environments in simulation and on physical systems. We show in real-world experiments that, in addition to achieving maps that are more accurate than traditional methods, the proposed filtering scheme demonstrates a much higher level of consistency between its error and the reported confidence, hence, enabling a more reliable collision risk evaluation for motion planning.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364919839762</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2031-8564</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 2019-10, Vol.38 (12-13), p.1352-1374 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_proquest_journals_2304087557 |
source | SAGE Complete |
subjects | Algorithms Computer simulation Dependence Mapping Motion planning Occupancy Risk assessment Sensors Unknown environments |
title | Confidence-rich grid mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidence-rich%20grid%20mapping&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Agha-mohammadi,%20Ali-akbar&rft.date=2019-10-01&rft.volume=38&rft.issue=12-13&rft.spage=1352&rft.epage=1374&rft.pages=1352-1374&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/0278364919839762&rft_dat=%3Cproquest_cross%3E2304087557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2304087557&rft_id=info:pmid/&rft_sage_id=10.1177_0278364919839762&rfr_iscdi=true |