Optimal Open-Loop Control for 2-D Colloid Transport in the Dead-End Microchannel
When rigid colloids are placed in the nonuniform solute concentration, the colloid is driven toward or away from the higher solute concentration side by solute gradients. This phenomenon, called diffusiophoresis, has been exploited in many microfluidic applications. In this brief, the colloid transp...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2019-11, Vol.27 (6), p.2757-2765 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2765 |
---|---|
container_issue | 6 |
container_start_page | 2757 |
container_title | IEEE transactions on control systems technology |
container_volume | 27 |
creator | Chen, Tehuan Zhou, Shichao Ren, Zhigang Xu, Chao |
description | When rigid colloids are placed in the nonuniform solute concentration, the colloid is driven toward or away from the higher solute concentration side by solute gradients. This phenomenon, called diffusiophoresis, has been exploited in many microfluidic applications. In this brief, the colloid transport process driven by the solute gradients in a dead-end microchannel is modeled by a 2-D solute diffusion model and a 2-D colloid transport model. Then, an optimal control problem for the colloid transport process with a boundary solute concentration being manipulated is formulated. To solve this optimal control problem, the control parameterization method first is applied to discretize the boundary control actuation. Then, the adjoint approach based on the Lagrange multiplier functions is employed to derive the gradient formulas of the objective functional with respect to the parameterized control variables. An effective computational method with the FEniCS Project (a finite-element-method-based computational physics package) is proposed, and an existing gradient-based optimization technique is used for minimizing the objective functional. Finally, we give the simulation results to demonstrate that the objective functional based on the proposed method is less nearly three orders of magnitude than that of a constant value control strategy, which well illustrates the effectiveness of the proposed method. |
doi_str_mv | 10.1109/TCST.2018.2862865 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2303978930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8438318</ieee_id><sourcerecordid>2303978930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-224bc8d6da2c9bc217792f3502e174977b58064319f8c6365fe695adcb188d643</originalsourceid><addsrcrecordid>eNo9UFtLwzAYDaLgnP4A8SXgc2Yuze1Ruk2FyQTrc2jTlHXUpCbdg__ejA3hg3M-OOe7HADuCV4QgvVTVX5WC4qJWlAlcvELMCOcK4Qzv8wcC4YEZ-Ia3KS0x5gUnMoZ-NiOU_9dD3A7Oo82IYywDH6KYYBdiJCiZe6HIfQtrGLt0xjiBHsPp52DS1e3aOVb-N7bGOyu9t4Nt-Cqq4fk7s44B1_rVVW-os325a183iBLNZsQpUVjVSvamlrdWEqk1LRjHFNHZKGlbLjComBEd8oKJnjnhOZ1axuisq1gc_B4mjvG8HNwaTL7cIg-rzSUYaal0hnmgJxU-cCUouvMGPO78dcQbI7BmWNw5hicOQeXPQ8nT--c-9ergilGFPsDZhxniw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303978930</pqid></control><display><type>article</type><title>Optimal Open-Loop Control for 2-D Colloid Transport in the Dead-End Microchannel</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Tehuan ; Zhou, Shichao ; Ren, Zhigang ; Xu, Chao</creator><creatorcontrib>Chen, Tehuan ; Zhou, Shichao ; Ren, Zhigang ; Xu, Chao</creatorcontrib><description>When rigid colloids are placed in the nonuniform solute concentration, the colloid is driven toward or away from the higher solute concentration side by solute gradients. This phenomenon, called diffusiophoresis, has been exploited in many microfluidic applications. In this brief, the colloid transport process driven by the solute gradients in a dead-end microchannel is modeled by a 2-D solute diffusion model and a 2-D colloid transport model. Then, an optimal control problem for the colloid transport process with a boundary solute concentration being manipulated is formulated. To solve this optimal control problem, the control parameterization method first is applied to discretize the boundary control actuation. Then, the adjoint approach based on the Lagrange multiplier functions is employed to derive the gradient formulas of the objective functional with respect to the parameterized control variables. An effective computational method with the FEniCS Project (a finite-element-method-based computational physics package) is proposed, and an existing gradient-based optimization technique is used for minimizing the objective functional. Finally, we give the simulation results to demonstrate that the objective functional based on the proposed method is less nearly three orders of magnitude than that of a constant value control strategy, which well illustrates the effectiveness of the proposed method.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2018.2862865</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>2-D colloid transport model ; Actuation ; adjoint approach ; Boundary control ; Colloiding ; computational optimal control ; Computer simulation ; Concentration gradient ; control parameterization ; dead-end microchannel ; diffusiophoresis ; FEniCS Project ; Finite element method ; Functionals ; Lagrange multiplier ; Mathematical model ; Microchannels ; Microfluidics ; Micropumps ; Open loop systems ; Optimal control ; Optimization ; Optimization techniques ; Parameterization ; Transport processes ; Two dimensional models</subject><ispartof>IEEE transactions on control systems technology, 2019-11, Vol.27 (6), p.2757-2765</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-224bc8d6da2c9bc217792f3502e174977b58064319f8c6365fe695adcb188d643</citedby><cites>FETCH-LOGICAL-c293t-224bc8d6da2c9bc217792f3502e174977b58064319f8c6365fe695adcb188d643</cites><orcidid>0000-0002-5370-4410 ; 0000-0002-0357-2309 ; 0000-0002-2759-6364 ; 0000-0002-0913-0130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8438318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8438318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Tehuan</creatorcontrib><creatorcontrib>Zhou, Shichao</creatorcontrib><creatorcontrib>Ren, Zhigang</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><title>Optimal Open-Loop Control for 2-D Colloid Transport in the Dead-End Microchannel</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>When rigid colloids are placed in the nonuniform solute concentration, the colloid is driven toward or away from the higher solute concentration side by solute gradients. This phenomenon, called diffusiophoresis, has been exploited in many microfluidic applications. In this brief, the colloid transport process driven by the solute gradients in a dead-end microchannel is modeled by a 2-D solute diffusion model and a 2-D colloid transport model. Then, an optimal control problem for the colloid transport process with a boundary solute concentration being manipulated is formulated. To solve this optimal control problem, the control parameterization method first is applied to discretize the boundary control actuation. Then, the adjoint approach based on the Lagrange multiplier functions is employed to derive the gradient formulas of the objective functional with respect to the parameterized control variables. An effective computational method with the FEniCS Project (a finite-element-method-based computational physics package) is proposed, and an existing gradient-based optimization technique is used for minimizing the objective functional. Finally, we give the simulation results to demonstrate that the objective functional based on the proposed method is less nearly three orders of magnitude than that of a constant value control strategy, which well illustrates the effectiveness of the proposed method.</description><subject>2-D colloid transport model</subject><subject>Actuation</subject><subject>adjoint approach</subject><subject>Boundary control</subject><subject>Colloiding</subject><subject>computational optimal control</subject><subject>Computer simulation</subject><subject>Concentration gradient</subject><subject>control parameterization</subject><subject>dead-end microchannel</subject><subject>diffusiophoresis</subject><subject>FEniCS Project</subject><subject>Finite element method</subject><subject>Functionals</subject><subject>Lagrange multiplier</subject><subject>Mathematical model</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Micropumps</subject><subject>Open loop systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Parameterization</subject><subject>Transport processes</subject><subject>Two dimensional models</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UFtLwzAYDaLgnP4A8SXgc2Yuze1Ruk2FyQTrc2jTlHXUpCbdg__ejA3hg3M-OOe7HADuCV4QgvVTVX5WC4qJWlAlcvELMCOcK4Qzv8wcC4YEZ-Ia3KS0x5gUnMoZ-NiOU_9dD3A7Oo82IYywDH6KYYBdiJCiZe6HIfQtrGLt0xjiBHsPp52DS1e3aOVb-N7bGOyu9t4Nt-Cqq4fk7s44B1_rVVW-os325a183iBLNZsQpUVjVSvamlrdWEqk1LRjHFNHZKGlbLjComBEd8oKJnjnhOZ1axuisq1gc_B4mjvG8HNwaTL7cIg-rzSUYaal0hnmgJxU-cCUouvMGPO78dcQbI7BmWNw5hicOQeXPQ8nT--c-9ergilGFPsDZhxniw</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Chen, Tehuan</creator><creator>Zhou, Shichao</creator><creator>Ren, Zhigang</creator><creator>Xu, Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5370-4410</orcidid><orcidid>https://orcid.org/0000-0002-0357-2309</orcidid><orcidid>https://orcid.org/0000-0002-2759-6364</orcidid><orcidid>https://orcid.org/0000-0002-0913-0130</orcidid></search><sort><creationdate>201911</creationdate><title>Optimal Open-Loop Control for 2-D Colloid Transport in the Dead-End Microchannel</title><author>Chen, Tehuan ; Zhou, Shichao ; Ren, Zhigang ; Xu, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-224bc8d6da2c9bc217792f3502e174977b58064319f8c6365fe695adcb188d643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>2-D colloid transport model</topic><topic>Actuation</topic><topic>adjoint approach</topic><topic>Boundary control</topic><topic>Colloiding</topic><topic>computational optimal control</topic><topic>Computer simulation</topic><topic>Concentration gradient</topic><topic>control parameterization</topic><topic>dead-end microchannel</topic><topic>diffusiophoresis</topic><topic>FEniCS Project</topic><topic>Finite element method</topic><topic>Functionals</topic><topic>Lagrange multiplier</topic><topic>Mathematical model</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Micropumps</topic><topic>Open loop systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Parameterization</topic><topic>Transport processes</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tehuan</creatorcontrib><creatorcontrib>Zhou, Shichao</creatorcontrib><creatorcontrib>Ren, Zhigang</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Tehuan</au><au>Zhou, Shichao</au><au>Ren, Zhigang</au><au>Xu, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Open-Loop Control for 2-D Colloid Transport in the Dead-End Microchannel</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2019-11</date><risdate>2019</risdate><volume>27</volume><issue>6</issue><spage>2757</spage><epage>2765</epage><pages>2757-2765</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>When rigid colloids are placed in the nonuniform solute concentration, the colloid is driven toward or away from the higher solute concentration side by solute gradients. This phenomenon, called diffusiophoresis, has been exploited in many microfluidic applications. In this brief, the colloid transport process driven by the solute gradients in a dead-end microchannel is modeled by a 2-D solute diffusion model and a 2-D colloid transport model. Then, an optimal control problem for the colloid transport process with a boundary solute concentration being manipulated is formulated. To solve this optimal control problem, the control parameterization method first is applied to discretize the boundary control actuation. Then, the adjoint approach based on the Lagrange multiplier functions is employed to derive the gradient formulas of the objective functional with respect to the parameterized control variables. An effective computational method with the FEniCS Project (a finite-element-method-based computational physics package) is proposed, and an existing gradient-based optimization technique is used for minimizing the objective functional. Finally, we give the simulation results to demonstrate that the objective functional based on the proposed method is less nearly three orders of magnitude than that of a constant value control strategy, which well illustrates the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2018.2862865</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5370-4410</orcidid><orcidid>https://orcid.org/0000-0002-0357-2309</orcidid><orcidid>https://orcid.org/0000-0002-2759-6364</orcidid><orcidid>https://orcid.org/0000-0002-0913-0130</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2019-11, Vol.27 (6), p.2757-2765 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_proquest_journals_2303978930 |
source | IEEE Electronic Library (IEL) |
subjects | 2-D colloid transport model Actuation adjoint approach Boundary control Colloiding computational optimal control Computer simulation Concentration gradient control parameterization dead-end microchannel diffusiophoresis FEniCS Project Finite element method Functionals Lagrange multiplier Mathematical model Microchannels Microfluidics Micropumps Open loop systems Optimal control Optimization Optimization techniques Parameterization Transport processes Two dimensional models |
title | Optimal Open-Loop Control for 2-D Colloid Transport in the Dead-End Microchannel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Open-Loop%20Control%20for%202-D%20Colloid%20Transport%20in%20the%20Dead-End%20Microchannel&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Chen,%20Tehuan&rft.date=2019-11&rft.volume=27&rft.issue=6&rft.spage=2757&rft.epage=2765&rft.pages=2757-2765&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2018.2862865&rft_dat=%3Cproquest_RIE%3E2303978930%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303978930&rft_id=info:pmid/&rft_ieee_id=8438318&rfr_iscdi=true |