Optimal Open-Loop Control for 2-D Colloid Transport in the Dead-End Microchannel

When rigid colloids are placed in the nonuniform solute concentration, the colloid is driven toward or away from the higher solute concentration side by solute gradients. This phenomenon, called diffusiophoresis, has been exploited in many microfluidic applications. In this brief, the colloid transp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2019-11, Vol.27 (6), p.2757-2765
Hauptverfasser: Chen, Tehuan, Zhou, Shichao, Ren, Zhigang, Xu, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2765
container_issue 6
container_start_page 2757
container_title IEEE transactions on control systems technology
container_volume 27
creator Chen, Tehuan
Zhou, Shichao
Ren, Zhigang
Xu, Chao
description When rigid colloids are placed in the nonuniform solute concentration, the colloid is driven toward or away from the higher solute concentration side by solute gradients. This phenomenon, called diffusiophoresis, has been exploited in many microfluidic applications. In this brief, the colloid transport process driven by the solute gradients in a dead-end microchannel is modeled by a 2-D solute diffusion model and a 2-D colloid transport model. Then, an optimal control problem for the colloid transport process with a boundary solute concentration being manipulated is formulated. To solve this optimal control problem, the control parameterization method first is applied to discretize the boundary control actuation. Then, the adjoint approach based on the Lagrange multiplier functions is employed to derive the gradient formulas of the objective functional with respect to the parameterized control variables. An effective computational method with the FEniCS Project (a finite-element-method-based computational physics package) is proposed, and an existing gradient-based optimization technique is used for minimizing the objective functional. Finally, we give the simulation results to demonstrate that the objective functional based on the proposed method is less nearly three orders of magnitude than that of a constant value control strategy, which well illustrates the effectiveness of the proposed method.
doi_str_mv 10.1109/TCST.2018.2862865
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2303978930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8438318</ieee_id><sourcerecordid>2303978930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-224bc8d6da2c9bc217792f3502e174977b58064319f8c6365fe695adcb188d643</originalsourceid><addsrcrecordid>eNo9UFtLwzAYDaLgnP4A8SXgc2Yuze1Ruk2FyQTrc2jTlHXUpCbdg__ejA3hg3M-OOe7HADuCV4QgvVTVX5WC4qJWlAlcvELMCOcK4Qzv8wcC4YEZ-Ia3KS0x5gUnMoZ-NiOU_9dD3A7Oo82IYywDH6KYYBdiJCiZe6HIfQtrGLt0xjiBHsPp52DS1e3aOVb-N7bGOyu9t4Nt-Cqq4fk7s44B1_rVVW-os325a183iBLNZsQpUVjVSvamlrdWEqk1LRjHFNHZKGlbLjComBEd8oKJnjnhOZ1axuisq1gc_B4mjvG8HNwaTL7cIg-rzSUYaal0hnmgJxU-cCUouvMGPO78dcQbI7BmWNw5hicOQeXPQ8nT--c-9ergilGFPsDZhxniw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303978930</pqid></control><display><type>article</type><title>Optimal Open-Loop Control for 2-D Colloid Transport in the Dead-End Microchannel</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Tehuan ; Zhou, Shichao ; Ren, Zhigang ; Xu, Chao</creator><creatorcontrib>Chen, Tehuan ; Zhou, Shichao ; Ren, Zhigang ; Xu, Chao</creatorcontrib><description>When rigid colloids are placed in the nonuniform solute concentration, the colloid is driven toward or away from the higher solute concentration side by solute gradients. This phenomenon, called diffusiophoresis, has been exploited in many microfluidic applications. In this brief, the colloid transport process driven by the solute gradients in a dead-end microchannel is modeled by a 2-D solute diffusion model and a 2-D colloid transport model. Then, an optimal control problem for the colloid transport process with a boundary solute concentration being manipulated is formulated. To solve this optimal control problem, the control parameterization method first is applied to discretize the boundary control actuation. Then, the adjoint approach based on the Lagrange multiplier functions is employed to derive the gradient formulas of the objective functional with respect to the parameterized control variables. An effective computational method with the FEniCS Project (a finite-element-method-based computational physics package) is proposed, and an existing gradient-based optimization technique is used for minimizing the objective functional. Finally, we give the simulation results to demonstrate that the objective functional based on the proposed method is less nearly three orders of magnitude than that of a constant value control strategy, which well illustrates the effectiveness of the proposed method.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2018.2862865</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>2-D colloid transport model ; Actuation ; adjoint approach ; Boundary control ; Colloiding ; computational optimal control ; Computer simulation ; Concentration gradient ; control parameterization ; dead-end microchannel ; diffusiophoresis ; FEniCS Project ; Finite element method ; Functionals ; Lagrange multiplier ; Mathematical model ; Microchannels ; Microfluidics ; Micropumps ; Open loop systems ; Optimal control ; Optimization ; Optimization techniques ; Parameterization ; Transport processes ; Two dimensional models</subject><ispartof>IEEE transactions on control systems technology, 2019-11, Vol.27 (6), p.2757-2765</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-224bc8d6da2c9bc217792f3502e174977b58064319f8c6365fe695adcb188d643</citedby><cites>FETCH-LOGICAL-c293t-224bc8d6da2c9bc217792f3502e174977b58064319f8c6365fe695adcb188d643</cites><orcidid>0000-0002-5370-4410 ; 0000-0002-0357-2309 ; 0000-0002-2759-6364 ; 0000-0002-0913-0130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8438318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8438318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Tehuan</creatorcontrib><creatorcontrib>Zhou, Shichao</creatorcontrib><creatorcontrib>Ren, Zhigang</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><title>Optimal Open-Loop Control for 2-D Colloid Transport in the Dead-End Microchannel</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>When rigid colloids are placed in the nonuniform solute concentration, the colloid is driven toward or away from the higher solute concentration side by solute gradients. This phenomenon, called diffusiophoresis, has been exploited in many microfluidic applications. In this brief, the colloid transport process driven by the solute gradients in a dead-end microchannel is modeled by a 2-D solute diffusion model and a 2-D colloid transport model. Then, an optimal control problem for the colloid transport process with a boundary solute concentration being manipulated is formulated. To solve this optimal control problem, the control parameterization method first is applied to discretize the boundary control actuation. Then, the adjoint approach based on the Lagrange multiplier functions is employed to derive the gradient formulas of the objective functional with respect to the parameterized control variables. An effective computational method with the FEniCS Project (a finite-element-method-based computational physics package) is proposed, and an existing gradient-based optimization technique is used for minimizing the objective functional. Finally, we give the simulation results to demonstrate that the objective functional based on the proposed method is less nearly three orders of magnitude than that of a constant value control strategy, which well illustrates the effectiveness of the proposed method.</description><subject>2-D colloid transport model</subject><subject>Actuation</subject><subject>adjoint approach</subject><subject>Boundary control</subject><subject>Colloiding</subject><subject>computational optimal control</subject><subject>Computer simulation</subject><subject>Concentration gradient</subject><subject>control parameterization</subject><subject>dead-end microchannel</subject><subject>diffusiophoresis</subject><subject>FEniCS Project</subject><subject>Finite element method</subject><subject>Functionals</subject><subject>Lagrange multiplier</subject><subject>Mathematical model</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Micropumps</subject><subject>Open loop systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Parameterization</subject><subject>Transport processes</subject><subject>Two dimensional models</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UFtLwzAYDaLgnP4A8SXgc2Yuze1Ruk2FyQTrc2jTlHXUpCbdg__ejA3hg3M-OOe7HADuCV4QgvVTVX5WC4qJWlAlcvELMCOcK4Qzv8wcC4YEZ-Ia3KS0x5gUnMoZ-NiOU_9dD3A7Oo82IYywDH6KYYBdiJCiZe6HIfQtrGLt0xjiBHsPp52DS1e3aOVb-N7bGOyu9t4Nt-Cqq4fk7s44B1_rVVW-os325a183iBLNZsQpUVjVSvamlrdWEqk1LRjHFNHZKGlbLjComBEd8oKJnjnhOZ1axuisq1gc_B4mjvG8HNwaTL7cIg-rzSUYaal0hnmgJxU-cCUouvMGPO78dcQbI7BmWNw5hicOQeXPQ8nT--c-9ergilGFPsDZhxniw</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Chen, Tehuan</creator><creator>Zhou, Shichao</creator><creator>Ren, Zhigang</creator><creator>Xu, Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5370-4410</orcidid><orcidid>https://orcid.org/0000-0002-0357-2309</orcidid><orcidid>https://orcid.org/0000-0002-2759-6364</orcidid><orcidid>https://orcid.org/0000-0002-0913-0130</orcidid></search><sort><creationdate>201911</creationdate><title>Optimal Open-Loop Control for 2-D Colloid Transport in the Dead-End Microchannel</title><author>Chen, Tehuan ; Zhou, Shichao ; Ren, Zhigang ; Xu, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-224bc8d6da2c9bc217792f3502e174977b58064319f8c6365fe695adcb188d643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>2-D colloid transport model</topic><topic>Actuation</topic><topic>adjoint approach</topic><topic>Boundary control</topic><topic>Colloiding</topic><topic>computational optimal control</topic><topic>Computer simulation</topic><topic>Concentration gradient</topic><topic>control parameterization</topic><topic>dead-end microchannel</topic><topic>diffusiophoresis</topic><topic>FEniCS Project</topic><topic>Finite element method</topic><topic>Functionals</topic><topic>Lagrange multiplier</topic><topic>Mathematical model</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Micropumps</topic><topic>Open loop systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Parameterization</topic><topic>Transport processes</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tehuan</creatorcontrib><creatorcontrib>Zhou, Shichao</creatorcontrib><creatorcontrib>Ren, Zhigang</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Tehuan</au><au>Zhou, Shichao</au><au>Ren, Zhigang</au><au>Xu, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Open-Loop Control for 2-D Colloid Transport in the Dead-End Microchannel</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2019-11</date><risdate>2019</risdate><volume>27</volume><issue>6</issue><spage>2757</spage><epage>2765</epage><pages>2757-2765</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>When rigid colloids are placed in the nonuniform solute concentration, the colloid is driven toward or away from the higher solute concentration side by solute gradients. This phenomenon, called diffusiophoresis, has been exploited in many microfluidic applications. In this brief, the colloid transport process driven by the solute gradients in a dead-end microchannel is modeled by a 2-D solute diffusion model and a 2-D colloid transport model. Then, an optimal control problem for the colloid transport process with a boundary solute concentration being manipulated is formulated. To solve this optimal control problem, the control parameterization method first is applied to discretize the boundary control actuation. Then, the adjoint approach based on the Lagrange multiplier functions is employed to derive the gradient formulas of the objective functional with respect to the parameterized control variables. An effective computational method with the FEniCS Project (a finite-element-method-based computational physics package) is proposed, and an existing gradient-based optimization technique is used for minimizing the objective functional. Finally, we give the simulation results to demonstrate that the objective functional based on the proposed method is less nearly three orders of magnitude than that of a constant value control strategy, which well illustrates the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2018.2862865</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5370-4410</orcidid><orcidid>https://orcid.org/0000-0002-0357-2309</orcidid><orcidid>https://orcid.org/0000-0002-2759-6364</orcidid><orcidid>https://orcid.org/0000-0002-0913-0130</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2019-11, Vol.27 (6), p.2757-2765
issn 1063-6536
1558-0865
language eng
recordid cdi_proquest_journals_2303978930
source IEEE Electronic Library (IEL)
subjects 2-D colloid transport model
Actuation
adjoint approach
Boundary control
Colloiding
computational optimal control
Computer simulation
Concentration gradient
control parameterization
dead-end microchannel
diffusiophoresis
FEniCS Project
Finite element method
Functionals
Lagrange multiplier
Mathematical model
Microchannels
Microfluidics
Micropumps
Open loop systems
Optimal control
Optimization
Optimization techniques
Parameterization
Transport processes
Two dimensional models
title Optimal Open-Loop Control for 2-D Colloid Transport in the Dead-End Microchannel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Open-Loop%20Control%20for%202-D%20Colloid%20Transport%20in%20the%20Dead-End%20Microchannel&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Chen,%20Tehuan&rft.date=2019-11&rft.volume=27&rft.issue=6&rft.spage=2757&rft.epage=2765&rft.pages=2757-2765&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2018.2862865&rft_dat=%3Cproquest_RIE%3E2303978930%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303978930&rft_id=info:pmid/&rft_ieee_id=8438318&rfr_iscdi=true