Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for sodium-ion batteries

P2-Na 0.67 Co 0.25 Mn 0.75- x Nb x O 2 ( x  = 0, 0.015, 0.030, 0.045) cathode materials were obtained by a simple solid-state method. The Nb 5+ -doped effects on ameliorating the structural and electrochemical properties of the Na 0.67 Co 0.25 Mn 0.75 O 2 parent material for sodium-ion batteries hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2019-10, Vol.25 (10), p.4775-4786
Hauptverfasser: Wang, Lijun, Wang, Yanzhi, Zhao, Jiabin, Li, Yanhong, Wang, Jinlong, Yang, Xiaheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4786
container_issue 10
container_start_page 4775
container_title Ionics
container_volume 25
creator Wang, Lijun
Wang, Yanzhi
Zhao, Jiabin
Li, Yanhong
Wang, Jinlong
Yang, Xiaheng
description P2-Na 0.67 Co 0.25 Mn 0.75- x Nb x O 2 ( x  = 0, 0.015, 0.030, 0.045) cathode materials were obtained by a simple solid-state method. The Nb 5+ -doped effects on ameliorating the structural and electrochemical properties of the Na 0.67 Co 0.25 Mn 0.75 O 2 parent material for sodium-ion batteries have been investigated. XRD measurements confirm a hexagonal main phase (P6 3 /mmc) and some trace of orthorhombic NaNbO 3 (P2 1 ma). Rietveld refinements exhibit the higher lattice parameters and the bigger c / a values due to Nb 5+ doping into the parent Na 0.67 Co 0.25 Mn 0.75 O 2 . The optimized 3.0 at.% Nb 5+ -doped P2-Na 0.67 Co 0.25 Mn 0.75 O 2 sample delivers the initial discharge capacity of 126.7 mAh g −1 at 0.1 C in the voltage range of 1.8–4.0 V, and its capacity retention is 75.3% after 100 cycles, which is 63.7% higher than that of the pristine. Whereas at 10 C rate, the optimized sample presents the maximal discharge capacity of 72.8 mAh g −1 with an excellent high-rate cycling stability of 91.6% retention after 100 cycles, correspondingly the pristine shows 61.4 mAh g −1 and 73.1% retention. These excellent electrochemical performances are ascribed to better structural stability, and lower charge transfer resistance and higher Na + diffusion coefficient after Nb 5+ doping. Therefore, the Nb 5+ -doped P2-type cathode materials can be deemed as a beneficial improvement for researches on sodium-ion batteries.
doi_str_mv 10.1007/s11581-019-03035-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2303812694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2303812694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-154f224ebbe34ce9c165349f1943c3b682bcbec98d6f357c93a44de8e925bddf3</originalsourceid><addsrcrecordid>eNp9kEtrGzEUhUVpoa6TP9CVIMuiRq95aFlMkxTyWjRrIWnu2DLj0VSSice_vkocyC6rA5fznQsfQt8Z_ckobS4TY1XLCGWKUEFFRY6f0IK1NSe0qelntKBKNqShsvmKvqW0pbSuGW8W6HBvqx-kCxN0-JGTPE-A70ZiTSqHwcwQS4aD7wA7kzeh5LPPG2xGDAcHwwBjxhu_3pBocunMbvDjGqdsrB98nnEfIk6h8_sd8WHE1uQM0UM6Q196MyQ4f8slerr6_Xd1Q24frv-sft0Sx6XKhFWy51yCtSCkA-VYXQmpeqakcMLWLbfOglNtV_eiapwSRsoOWlC8sl3XiyW6OO1OMfzbQ8p6G_ZxLC81L6ZaxusytUT81HIxpBSh11P0OxNnzah-MaxPhnUxrF8N62OBxAlKpTyuIb5Pf0D9B85_gFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303812694</pqid></control><display><type>article</type><title>Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for sodium-ion batteries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Lijun ; Wang, Yanzhi ; Zhao, Jiabin ; Li, Yanhong ; Wang, Jinlong ; Yang, Xiaheng</creator><creatorcontrib>Wang, Lijun ; Wang, Yanzhi ; Zhao, Jiabin ; Li, Yanhong ; Wang, Jinlong ; Yang, Xiaheng</creatorcontrib><description>P2-Na 0.67 Co 0.25 Mn 0.75- x Nb x O 2 ( x  = 0, 0.015, 0.030, 0.045) cathode materials were obtained by a simple solid-state method. The Nb 5+ -doped effects on ameliorating the structural and electrochemical properties of the Na 0.67 Co 0.25 Mn 0.75 O 2 parent material for sodium-ion batteries have been investigated. XRD measurements confirm a hexagonal main phase (P6 3 /mmc) and some trace of orthorhombic NaNbO 3 (P2 1 ma). Rietveld refinements exhibit the higher lattice parameters and the bigger c / a values due to Nb 5+ doping into the parent Na 0.67 Co 0.25 Mn 0.75 O 2 . The optimized 3.0 at.% Nb 5+ -doped P2-Na 0.67 Co 0.25 Mn 0.75 O 2 sample delivers the initial discharge capacity of 126.7 mAh g −1 at 0.1 C in the voltage range of 1.8–4.0 V, and its capacity retention is 75.3% after 100 cycles, which is 63.7% higher than that of the pristine. Whereas at 10 C rate, the optimized sample presents the maximal discharge capacity of 72.8 mAh g −1 with an excellent high-rate cycling stability of 91.6% retention after 100 cycles, correspondingly the pristine shows 61.4 mAh g −1 and 73.1% retention. These excellent electrochemical performances are ascribed to better structural stability, and lower charge transfer resistance and higher Na + diffusion coefficient after Nb 5+ doping. Therefore, the Nb 5+ -doped P2-type cathode materials can be deemed as a beneficial improvement for researches on sodium-ion batteries.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-019-03035-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cathodes ; Charge transfer ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Cycles ; Diffusion coefficient ; Discharge ; Doping ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Energy Storage ; Lattice parameters ; Optical and Electronic Materials ; Original Paper ; Rechargeable batteries ; Renewable and Green Energy ; Retention ; Sodium-ion batteries ; Structural stability</subject><ispartof>Ionics, 2019-10, Vol.25 (10), p.4775-4786</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-154f224ebbe34ce9c165349f1943c3b682bcbec98d6f357c93a44de8e925bddf3</citedby><cites>FETCH-LOGICAL-c249t-154f224ebbe34ce9c165349f1943c3b682bcbec98d6f357c93a44de8e925bddf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-019-03035-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-019-03035-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Wang, Lijun</creatorcontrib><creatorcontrib>Wang, Yanzhi</creatorcontrib><creatorcontrib>Zhao, Jiabin</creatorcontrib><creatorcontrib>Li, Yanhong</creatorcontrib><creatorcontrib>Wang, Jinlong</creatorcontrib><creatorcontrib>Yang, Xiaheng</creatorcontrib><title>Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for sodium-ion batteries</title><title>Ionics</title><addtitle>Ionics</addtitle><description>P2-Na 0.67 Co 0.25 Mn 0.75- x Nb x O 2 ( x  = 0, 0.015, 0.030, 0.045) cathode materials were obtained by a simple solid-state method. The Nb 5+ -doped effects on ameliorating the structural and electrochemical properties of the Na 0.67 Co 0.25 Mn 0.75 O 2 parent material for sodium-ion batteries have been investigated. XRD measurements confirm a hexagonal main phase (P6 3 /mmc) and some trace of orthorhombic NaNbO 3 (P2 1 ma). Rietveld refinements exhibit the higher lattice parameters and the bigger c / a values due to Nb 5+ doping into the parent Na 0.67 Co 0.25 Mn 0.75 O 2 . The optimized 3.0 at.% Nb 5+ -doped P2-Na 0.67 Co 0.25 Mn 0.75 O 2 sample delivers the initial discharge capacity of 126.7 mAh g −1 at 0.1 C in the voltage range of 1.8–4.0 V, and its capacity retention is 75.3% after 100 cycles, which is 63.7% higher than that of the pristine. Whereas at 10 C rate, the optimized sample presents the maximal discharge capacity of 72.8 mAh g −1 with an excellent high-rate cycling stability of 91.6% retention after 100 cycles, correspondingly the pristine shows 61.4 mAh g −1 and 73.1% retention. These excellent electrochemical performances are ascribed to better structural stability, and lower charge transfer resistance and higher Na + diffusion coefficient after Nb 5+ doping. Therefore, the Nb 5+ -doped P2-type cathode materials can be deemed as a beneficial improvement for researches on sodium-ion batteries.</description><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Cycles</subject><subject>Diffusion coefficient</subject><subject>Discharge</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy Storage</subject><subject>Lattice parameters</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Retention</subject><subject>Sodium-ion batteries</subject><subject>Structural stability</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrGzEUhUVpoa6TP9CVIMuiRq95aFlMkxTyWjRrIWnu2DLj0VSSice_vkocyC6rA5fznQsfQt8Z_ckobS4TY1XLCGWKUEFFRY6f0IK1NSe0qelntKBKNqShsvmKvqW0pbSuGW8W6HBvqx-kCxN0-JGTPE-A70ZiTSqHwcwQS4aD7wA7kzeh5LPPG2xGDAcHwwBjxhu_3pBocunMbvDjGqdsrB98nnEfIk6h8_sd8WHE1uQM0UM6Q196MyQ4f8slerr6_Xd1Q24frv-sft0Sx6XKhFWy51yCtSCkA-VYXQmpeqakcMLWLbfOglNtV_eiapwSRsoOWlC8sl3XiyW6OO1OMfzbQ8p6G_ZxLC81L6ZaxusytUT81HIxpBSh11P0OxNnzah-MaxPhnUxrF8N62OBxAlKpTyuIb5Pf0D9B85_gFM</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Wang, Lijun</creator><creator>Wang, Yanzhi</creator><creator>Zhao, Jiabin</creator><creator>Li, Yanhong</creator><creator>Wang, Jinlong</creator><creator>Yang, Xiaheng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191001</creationdate><title>Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for sodium-ion batteries</title><author>Wang, Lijun ; Wang, Yanzhi ; Zhao, Jiabin ; Li, Yanhong ; Wang, Jinlong ; Yang, Xiaheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-154f224ebbe34ce9c165349f1943c3b682bcbec98d6f357c93a44de8e925bddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Cycles</topic><topic>Diffusion coefficient</topic><topic>Discharge</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy Storage</topic><topic>Lattice parameters</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Retention</topic><topic>Sodium-ion batteries</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lijun</creatorcontrib><creatorcontrib>Wang, Yanzhi</creatorcontrib><creatorcontrib>Zhao, Jiabin</creatorcontrib><creatorcontrib>Li, Yanhong</creatorcontrib><creatorcontrib>Wang, Jinlong</creatorcontrib><creatorcontrib>Yang, Xiaheng</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lijun</au><au>Wang, Yanzhi</au><au>Zhao, Jiabin</au><au>Li, Yanhong</au><au>Wang, Jinlong</au><au>Yang, Xiaheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for sodium-ion batteries</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>25</volume><issue>10</issue><spage>4775</spage><epage>4786</epage><pages>4775-4786</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>P2-Na 0.67 Co 0.25 Mn 0.75- x Nb x O 2 ( x  = 0, 0.015, 0.030, 0.045) cathode materials were obtained by a simple solid-state method. The Nb 5+ -doped effects on ameliorating the structural and electrochemical properties of the Na 0.67 Co 0.25 Mn 0.75 O 2 parent material for sodium-ion batteries have been investigated. XRD measurements confirm a hexagonal main phase (P6 3 /mmc) and some trace of orthorhombic NaNbO 3 (P2 1 ma). Rietveld refinements exhibit the higher lattice parameters and the bigger c / a values due to Nb 5+ doping into the parent Na 0.67 Co 0.25 Mn 0.75 O 2 . The optimized 3.0 at.% Nb 5+ -doped P2-Na 0.67 Co 0.25 Mn 0.75 O 2 sample delivers the initial discharge capacity of 126.7 mAh g −1 at 0.1 C in the voltage range of 1.8–4.0 V, and its capacity retention is 75.3% after 100 cycles, which is 63.7% higher than that of the pristine. Whereas at 10 C rate, the optimized sample presents the maximal discharge capacity of 72.8 mAh g −1 with an excellent high-rate cycling stability of 91.6% retention after 100 cycles, correspondingly the pristine shows 61.4 mAh g −1 and 73.1% retention. These excellent electrochemical performances are ascribed to better structural stability, and lower charge transfer resistance and higher Na + diffusion coefficient after Nb 5+ doping. Therefore, the Nb 5+ -doped P2-type cathode materials can be deemed as a beneficial improvement for researches on sodium-ion batteries.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-019-03035-z</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2019-10, Vol.25 (10), p.4775-4786
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2303812694
source SpringerLink Journals - AutoHoldings
subjects Cathodes
Charge transfer
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Cycles
Diffusion coefficient
Discharge
Doping
Electrochemical analysis
Electrochemistry
Electrode materials
Energy Storage
Lattice parameters
Optical and Electronic Materials
Original Paper
Rechargeable batteries
Renewable and Green Energy
Retention
Sodium-ion batteries
Structural stability
title Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for sodium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nb5+-doped%20P2-type%20Mn-based%20layered%20oxide%20cathode%20with%20an%20excellent%20high-rate%20cycling%20stability%20for%20sodium-ion%20batteries&rft.jtitle=Ionics&rft.au=Wang,%20Lijun&rft.date=2019-10-01&rft.volume=25&rft.issue=10&rft.spage=4775&rft.epage=4786&rft.pages=4775-4786&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-019-03035-z&rft_dat=%3Cproquest_cross%3E2303812694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303812694&rft_id=info:pmid/&rfr_iscdi=true