Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for sodium-ion batteries
P2-Na 0.67 Co 0.25 Mn 0.75- x Nb x O 2 ( x = 0, 0.015, 0.030, 0.045) cathode materials were obtained by a simple solid-state method. The Nb 5+ -doped effects on ameliorating the structural and electrochemical properties of the Na 0.67 Co 0.25 Mn 0.75 O 2 parent material for sodium-ion batteries hav...
Gespeichert in:
Veröffentlicht in: | Ionics 2019-10, Vol.25 (10), p.4775-4786 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4786 |
---|---|
container_issue | 10 |
container_start_page | 4775 |
container_title | Ionics |
container_volume | 25 |
creator | Wang, Lijun Wang, Yanzhi Zhao, Jiabin Li, Yanhong Wang, Jinlong Yang, Xiaheng |
description | P2-Na
0.67
Co
0.25
Mn
0.75-
x
Nb
x
O
2
(
x
= 0, 0.015, 0.030, 0.045) cathode materials were obtained by a simple solid-state method. The Nb
5+
-doped effects on ameliorating the structural and electrochemical properties of the Na
0.67
Co
0.25
Mn
0.75
O
2
parent material for sodium-ion batteries have been investigated. XRD measurements confirm a hexagonal main phase (P6
3
/mmc) and some trace of orthorhombic NaNbO
3
(P2
1
ma). Rietveld refinements exhibit the higher lattice parameters and the bigger
c
/
a
values due to Nb
5+
doping into the parent Na
0.67
Co
0.25
Mn
0.75
O
2
. The optimized 3.0 at.% Nb
5+
-doped P2-Na
0.67
Co
0.25
Mn
0.75
O
2
sample delivers the initial discharge capacity of 126.7 mAh g
−1
at 0.1 C in the voltage range of 1.8–4.0 V, and its capacity retention is 75.3% after 100 cycles, which is 63.7% higher than that of the pristine. Whereas at 10 C rate, the optimized sample presents the maximal discharge capacity of 72.8 mAh g
−1
with an excellent high-rate cycling stability of 91.6% retention after 100 cycles, correspondingly the pristine shows 61.4 mAh g
−1
and 73.1% retention. These excellent electrochemical performances are ascribed to better structural stability, and lower charge transfer resistance and higher Na
+
diffusion coefficient after Nb
5+
doping. Therefore, the Nb
5+
-doped P2-type cathode materials can be deemed as a beneficial improvement for researches on sodium-ion batteries. |
doi_str_mv | 10.1007/s11581-019-03035-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2303812694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2303812694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-154f224ebbe34ce9c165349f1943c3b682bcbec98d6f357c93a44de8e925bddf3</originalsourceid><addsrcrecordid>eNp9kEtrGzEUhUVpoa6TP9CVIMuiRq95aFlMkxTyWjRrIWnu2DLj0VSSice_vkocyC6rA5fznQsfQt8Z_ckobS4TY1XLCGWKUEFFRY6f0IK1NSe0qelntKBKNqShsvmKvqW0pbSuGW8W6HBvqx-kCxN0-JGTPE-A70ZiTSqHwcwQS4aD7wA7kzeh5LPPG2xGDAcHwwBjxhu_3pBocunMbvDjGqdsrB98nnEfIk6h8_sd8WHE1uQM0UM6Q196MyQ4f8slerr6_Xd1Q24frv-sft0Sx6XKhFWy51yCtSCkA-VYXQmpeqakcMLWLbfOglNtV_eiapwSRsoOWlC8sl3XiyW6OO1OMfzbQ8p6G_ZxLC81L6ZaxusytUT81HIxpBSh11P0OxNnzah-MaxPhnUxrF8N62OBxAlKpTyuIb5Pf0D9B85_gFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303812694</pqid></control><display><type>article</type><title>Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for sodium-ion batteries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Lijun ; Wang, Yanzhi ; Zhao, Jiabin ; Li, Yanhong ; Wang, Jinlong ; Yang, Xiaheng</creator><creatorcontrib>Wang, Lijun ; Wang, Yanzhi ; Zhao, Jiabin ; Li, Yanhong ; Wang, Jinlong ; Yang, Xiaheng</creatorcontrib><description>P2-Na
0.67
Co
0.25
Mn
0.75-
x
Nb
x
O
2
(
x
= 0, 0.015, 0.030, 0.045) cathode materials were obtained by a simple solid-state method. The Nb
5+
-doped effects on ameliorating the structural and electrochemical properties of the Na
0.67
Co
0.25
Mn
0.75
O
2
parent material for sodium-ion batteries have been investigated. XRD measurements confirm a hexagonal main phase (P6
3
/mmc) and some trace of orthorhombic NaNbO
3
(P2
1
ma). Rietveld refinements exhibit the higher lattice parameters and the bigger
c
/
a
values due to Nb
5+
doping into the parent Na
0.67
Co
0.25
Mn
0.75
O
2
. The optimized 3.0 at.% Nb
5+
-doped P2-Na
0.67
Co
0.25
Mn
0.75
O
2
sample delivers the initial discharge capacity of 126.7 mAh g
−1
at 0.1 C in the voltage range of 1.8–4.0 V, and its capacity retention is 75.3% after 100 cycles, which is 63.7% higher than that of the pristine. Whereas at 10 C rate, the optimized sample presents the maximal discharge capacity of 72.8 mAh g
−1
with an excellent high-rate cycling stability of 91.6% retention after 100 cycles, correspondingly the pristine shows 61.4 mAh g
−1
and 73.1% retention. These excellent electrochemical performances are ascribed to better structural stability, and lower charge transfer resistance and higher Na
+
diffusion coefficient after Nb
5+
doping. Therefore, the Nb
5+
-doped P2-type cathode materials can be deemed as a beneficial improvement for researches on sodium-ion batteries.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-019-03035-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cathodes ; Charge transfer ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Cycles ; Diffusion coefficient ; Discharge ; Doping ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Energy Storage ; Lattice parameters ; Optical and Electronic Materials ; Original Paper ; Rechargeable batteries ; Renewable and Green Energy ; Retention ; Sodium-ion batteries ; Structural stability</subject><ispartof>Ionics, 2019-10, Vol.25 (10), p.4775-4786</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-154f224ebbe34ce9c165349f1943c3b682bcbec98d6f357c93a44de8e925bddf3</citedby><cites>FETCH-LOGICAL-c249t-154f224ebbe34ce9c165349f1943c3b682bcbec98d6f357c93a44de8e925bddf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-019-03035-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-019-03035-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Wang, Lijun</creatorcontrib><creatorcontrib>Wang, Yanzhi</creatorcontrib><creatorcontrib>Zhao, Jiabin</creatorcontrib><creatorcontrib>Li, Yanhong</creatorcontrib><creatorcontrib>Wang, Jinlong</creatorcontrib><creatorcontrib>Yang, Xiaheng</creatorcontrib><title>Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for sodium-ion batteries</title><title>Ionics</title><addtitle>Ionics</addtitle><description>P2-Na
0.67
Co
0.25
Mn
0.75-
x
Nb
x
O
2
(
x
= 0, 0.015, 0.030, 0.045) cathode materials were obtained by a simple solid-state method. The Nb
5+
-doped effects on ameliorating the structural and electrochemical properties of the Na
0.67
Co
0.25
Mn
0.75
O
2
parent material for sodium-ion batteries have been investigated. XRD measurements confirm a hexagonal main phase (P6
3
/mmc) and some trace of orthorhombic NaNbO
3
(P2
1
ma). Rietveld refinements exhibit the higher lattice parameters and the bigger
c
/
a
values due to Nb
5+
doping into the parent Na
0.67
Co
0.25
Mn
0.75
O
2
. The optimized 3.0 at.% Nb
5+
-doped P2-Na
0.67
Co
0.25
Mn
0.75
O
2
sample delivers the initial discharge capacity of 126.7 mAh g
−1
at 0.1 C in the voltage range of 1.8–4.0 V, and its capacity retention is 75.3% after 100 cycles, which is 63.7% higher than that of the pristine. Whereas at 10 C rate, the optimized sample presents the maximal discharge capacity of 72.8 mAh g
−1
with an excellent high-rate cycling stability of 91.6% retention after 100 cycles, correspondingly the pristine shows 61.4 mAh g
−1
and 73.1% retention. These excellent electrochemical performances are ascribed to better structural stability, and lower charge transfer resistance and higher Na
+
diffusion coefficient after Nb
5+
doping. Therefore, the Nb
5+
-doped P2-type cathode materials can be deemed as a beneficial improvement for researches on sodium-ion batteries.</description><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Cycles</subject><subject>Diffusion coefficient</subject><subject>Discharge</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy Storage</subject><subject>Lattice parameters</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Retention</subject><subject>Sodium-ion batteries</subject><subject>Structural stability</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrGzEUhUVpoa6TP9CVIMuiRq95aFlMkxTyWjRrIWnu2DLj0VSSice_vkocyC6rA5fznQsfQt8Z_ckobS4TY1XLCGWKUEFFRY6f0IK1NSe0qelntKBKNqShsvmKvqW0pbSuGW8W6HBvqx-kCxN0-JGTPE-A70ZiTSqHwcwQS4aD7wA7kzeh5LPPG2xGDAcHwwBjxhu_3pBocunMbvDjGqdsrB98nnEfIk6h8_sd8WHE1uQM0UM6Q196MyQ4f8slerr6_Xd1Q24frv-sft0Sx6XKhFWy51yCtSCkA-VYXQmpeqakcMLWLbfOglNtV_eiapwSRsoOWlC8sl3XiyW6OO1OMfzbQ8p6G_ZxLC81L6ZaxusytUT81HIxpBSh11P0OxNnzah-MaxPhnUxrF8N62OBxAlKpTyuIb5Pf0D9B85_gFM</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Wang, Lijun</creator><creator>Wang, Yanzhi</creator><creator>Zhao, Jiabin</creator><creator>Li, Yanhong</creator><creator>Wang, Jinlong</creator><creator>Yang, Xiaheng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191001</creationdate><title>Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for sodium-ion batteries</title><author>Wang, Lijun ; Wang, Yanzhi ; Zhao, Jiabin ; Li, Yanhong ; Wang, Jinlong ; Yang, Xiaheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-154f224ebbe34ce9c165349f1943c3b682bcbec98d6f357c93a44de8e925bddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Cycles</topic><topic>Diffusion coefficient</topic><topic>Discharge</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy Storage</topic><topic>Lattice parameters</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Retention</topic><topic>Sodium-ion batteries</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lijun</creatorcontrib><creatorcontrib>Wang, Yanzhi</creatorcontrib><creatorcontrib>Zhao, Jiabin</creatorcontrib><creatorcontrib>Li, Yanhong</creatorcontrib><creatorcontrib>Wang, Jinlong</creatorcontrib><creatorcontrib>Yang, Xiaheng</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lijun</au><au>Wang, Yanzhi</au><au>Zhao, Jiabin</au><au>Li, Yanhong</au><au>Wang, Jinlong</au><au>Yang, Xiaheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for sodium-ion batteries</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>25</volume><issue>10</issue><spage>4775</spage><epage>4786</epage><pages>4775-4786</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>P2-Na
0.67
Co
0.25
Mn
0.75-
x
Nb
x
O
2
(
x
= 0, 0.015, 0.030, 0.045) cathode materials were obtained by a simple solid-state method. The Nb
5+
-doped effects on ameliorating the structural and electrochemical properties of the Na
0.67
Co
0.25
Mn
0.75
O
2
parent material for sodium-ion batteries have been investigated. XRD measurements confirm a hexagonal main phase (P6
3
/mmc) and some trace of orthorhombic NaNbO
3
(P2
1
ma). Rietveld refinements exhibit the higher lattice parameters and the bigger
c
/
a
values due to Nb
5+
doping into the parent Na
0.67
Co
0.25
Mn
0.75
O
2
. The optimized 3.0 at.% Nb
5+
-doped P2-Na
0.67
Co
0.25
Mn
0.75
O
2
sample delivers the initial discharge capacity of 126.7 mAh g
−1
at 0.1 C in the voltage range of 1.8–4.0 V, and its capacity retention is 75.3% after 100 cycles, which is 63.7% higher than that of the pristine. Whereas at 10 C rate, the optimized sample presents the maximal discharge capacity of 72.8 mAh g
−1
with an excellent high-rate cycling stability of 91.6% retention after 100 cycles, correspondingly the pristine shows 61.4 mAh g
−1
and 73.1% retention. These excellent electrochemical performances are ascribed to better structural stability, and lower charge transfer resistance and higher Na
+
diffusion coefficient after Nb
5+
doping. Therefore, the Nb
5+
-doped P2-type cathode materials can be deemed as a beneficial improvement for researches on sodium-ion batteries.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-019-03035-z</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2019-10, Vol.25 (10), p.4775-4786 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2303812694 |
source | SpringerLink Journals - AutoHoldings |
subjects | Cathodes Charge transfer Chemistry Chemistry and Materials Science Condensed Matter Physics Cycles Diffusion coefficient Discharge Doping Electrochemical analysis Electrochemistry Electrode materials Energy Storage Lattice parameters Optical and Electronic Materials Original Paper Rechargeable batteries Renewable and Green Energy Retention Sodium-ion batteries Structural stability |
title | Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for sodium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nb5+-doped%20P2-type%20Mn-based%20layered%20oxide%20cathode%20with%20an%20excellent%20high-rate%20cycling%20stability%20for%20sodium-ion%20batteries&rft.jtitle=Ionics&rft.au=Wang,%20Lijun&rft.date=2019-10-01&rft.volume=25&rft.issue=10&rft.spage=4775&rft.epage=4786&rft.pages=4775-4786&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-019-03035-z&rft_dat=%3Cproquest_cross%3E2303812694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303812694&rft_id=info:pmid/&rfr_iscdi=true |