RNA: An Accurate Residual Network Accelerator for Quantized and Reconstructed Deep Neural Networks
With the continuous refinement of Deep Neural Networks (DNNs), a series of deep and complex networks such as Residual Networks (ResNets) show impressive prediction accuracy in image classification tasks. Unfortunately, the structural complexity and computational cost of residual networks make hardwa...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2019/05/01, Vol.E102.D(5), pp.1037-1045 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1045 |
---|---|
container_issue | 5 |
container_start_page | 1037 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E102.D |
creator | LUO, Cheng CAO, Wei WANG, Lingli LEONG, Philip H. W. |
description | With the continuous refinement of Deep Neural Networks (DNNs), a series of deep and complex networks such as Residual Networks (ResNets) show impressive prediction accuracy in image classification tasks. Unfortunately, the structural complexity and computational cost of residual networks make hardware implementation difficult. In this paper, we present the quantized and reconstructed deep neural network (QR-DNN) technique, which first inserts batch normalization (BN) layers in the network during training, and later removes them to facilitate efficient hardware implementation. Moreover, an accurate and efficient residual network accelerator (RNA) is presented based on QR-DNN with batch-normalization-free structures and weights represented in a logarithmic number system. RNA employs a systolic array architecture to perform shift-and-accumulate operations instead of multiplication operations. QR-DNN is shown to achieve a 1∼2% improvement in accuracy over existing techniques, and RNA over previous best fixed-point accelerators. An FPGA implementation on a Xilinx Zynq XC7Z045 device achieves 804.03 GOPS, 104.15 FPS and 91.41% top-5 accuracy for the ResNet-50 benchmark, and state-of-the-art results are also reported for AlexNet and VGG. |
doi_str_mv | 10.1587/transinf.2018RCP0008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2303793534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2303793534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-176ba6edc349d6a35ddd8f3fba5b7b0c347f7bcd6454dbd39101744cb894977f3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwBywisU6xYztO2EUtL6kqEMHa8iuQEpxiO0Lw9bgqLV2MPJq55458AThHcIJowS6DE9a3tplkEBX19BFCWByAEWKEpgjn6BCMYInytKA4OwYn3i9hFGaIjoCsF9VVUtmkUmpwIpikNr7Vg-iShQlfvXtfb0xn4q53SRPraRA2tD9GJ8LqKFe99cENKsTJzJhVBKPTjven4KgRnTdnf-8YvNxcP0_v0vnD7f20mqeK5iykiOVS5EYrTEqdC0y11kWDGymoZBLGMWuYVDonlGipcYlg_CBRsihJyViDx-Bi47ty_edgfODLfnA2nuQZhpiVmGISVWSjUq733pmGr1z7Idw3R5Cv0-TbNPlemhGrN9jSB_FqdpBwoVWd-YeuEcz4jNNts2eyE6s34bix-BdGM4hu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303793534</pqid></control><display><type>article</type><title>RNA: An Accurate Residual Network Accelerator for Quantized and Reconstructed Deep Neural Networks</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>LUO, Cheng ; CAO, Wei ; WANG, Lingli ; LEONG, Philip H. W.</creator><creatorcontrib>LUO, Cheng ; CAO, Wei ; WANG, Lingli ; LEONG, Philip H. W.</creatorcontrib><description>With the continuous refinement of Deep Neural Networks (DNNs), a series of deep and complex networks such as Residual Networks (ResNets) show impressive prediction accuracy in image classification tasks. Unfortunately, the structural complexity and computational cost of residual networks make hardware implementation difficult. In this paper, we present the quantized and reconstructed deep neural network (QR-DNN) technique, which first inserts batch normalization (BN) layers in the network during training, and later removes them to facilitate efficient hardware implementation. Moreover, an accurate and efficient residual network accelerator (RNA) is presented based on QR-DNN with batch-normalization-free structures and weights represented in a logarithmic number system. RNA employs a systolic array architecture to perform shift-and-accumulate operations instead of multiplication operations. QR-DNN is shown to achieve a 1∼2% improvement in accuracy over existing techniques, and RNA over previous best fixed-point accelerators. An FPGA implementation on a Xilinx Zynq XC7Z045 device achieves 804.03 GOPS, 104.15 FPS and 91.41% top-5 accuracy for the ResNet-50 benchmark, and state-of-the-art results are also reported for AlexNet and VGG.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2018RCP0008</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Accelerators ; Accuracy ; Artificial neural networks ; batch-normalization layers ; deep learning ; FPGA ; Hardware ; Image classification ; Inserts ; Multiplication ; Neural networks ; residual networks ; software-hardware co-design ; Task complexity</subject><ispartof>IEICE Transactions on Information and Systems, 2019/05/01, Vol.E102.D(5), pp.1037-1045</ispartof><rights>2019 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-176ba6edc349d6a35ddd8f3fba5b7b0c347f7bcd6454dbd39101744cb894977f3</citedby><cites>FETCH-LOGICAL-c567t-176ba6edc349d6a35ddd8f3fba5b7b0c347f7bcd6454dbd39101744cb894977f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>LUO, Cheng</creatorcontrib><creatorcontrib>CAO, Wei</creatorcontrib><creatorcontrib>WANG, Lingli</creatorcontrib><creatorcontrib>LEONG, Philip H. W.</creatorcontrib><title>RNA: An Accurate Residual Network Accelerator for Quantized and Reconstructed Deep Neural Networks</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>With the continuous refinement of Deep Neural Networks (DNNs), a series of deep and complex networks such as Residual Networks (ResNets) show impressive prediction accuracy in image classification tasks. Unfortunately, the structural complexity and computational cost of residual networks make hardware implementation difficult. In this paper, we present the quantized and reconstructed deep neural network (QR-DNN) technique, which first inserts batch normalization (BN) layers in the network during training, and later removes them to facilitate efficient hardware implementation. Moreover, an accurate and efficient residual network accelerator (RNA) is presented based on QR-DNN with batch-normalization-free structures and weights represented in a logarithmic number system. RNA employs a systolic array architecture to perform shift-and-accumulate operations instead of multiplication operations. QR-DNN is shown to achieve a 1∼2% improvement in accuracy over existing techniques, and RNA over previous best fixed-point accelerators. An FPGA implementation on a Xilinx Zynq XC7Z045 device achieves 804.03 GOPS, 104.15 FPS and 91.41% top-5 accuracy for the ResNet-50 benchmark, and state-of-the-art results are also reported for AlexNet and VGG.</description><subject>Accelerators</subject><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>batch-normalization layers</subject><subject>deep learning</subject><subject>FPGA</subject><subject>Hardware</subject><subject>Image classification</subject><subject>Inserts</subject><subject>Multiplication</subject><subject>Neural networks</subject><subject>residual networks</subject><subject>software-hardware co-design</subject><subject>Task complexity</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqXwBywisU6xYztO2EUtL6kqEMHa8iuQEpxiO0Lw9bgqLV2MPJq55458AThHcIJowS6DE9a3tplkEBX19BFCWByAEWKEpgjn6BCMYInytKA4OwYn3i9hFGaIjoCsF9VVUtmkUmpwIpikNr7Vg-iShQlfvXtfb0xn4q53SRPraRA2tD9GJ8LqKFe99cENKsTJzJhVBKPTjven4KgRnTdnf-8YvNxcP0_v0vnD7f20mqeK5iykiOVS5EYrTEqdC0y11kWDGymoZBLGMWuYVDonlGipcYlg_CBRsihJyViDx-Bi47ty_edgfODLfnA2nuQZhpiVmGISVWSjUq733pmGr1z7Idw3R5Cv0-TbNPlemhGrN9jSB_FqdpBwoVWd-YeuEcz4jNNts2eyE6s34bix-BdGM4hu</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>LUO, Cheng</creator><creator>CAO, Wei</creator><creator>WANG, Lingli</creator><creator>LEONG, Philip H. W.</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190501</creationdate><title>RNA: An Accurate Residual Network Accelerator for Quantized and Reconstructed Deep Neural Networks</title><author>LUO, Cheng ; CAO, Wei ; WANG, Lingli ; LEONG, Philip H. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-176ba6edc349d6a35ddd8f3fba5b7b0c347f7bcd6454dbd39101744cb894977f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accelerators</topic><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>batch-normalization layers</topic><topic>deep learning</topic><topic>FPGA</topic><topic>Hardware</topic><topic>Image classification</topic><topic>Inserts</topic><topic>Multiplication</topic><topic>Neural networks</topic><topic>residual networks</topic><topic>software-hardware co-design</topic><topic>Task complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LUO, Cheng</creatorcontrib><creatorcontrib>CAO, Wei</creatorcontrib><creatorcontrib>WANG, Lingli</creatorcontrib><creatorcontrib>LEONG, Philip H. W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LUO, Cheng</au><au>CAO, Wei</au><au>WANG, Lingli</au><au>LEONG, Philip H. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA: An Accurate Residual Network Accelerator for Quantized and Reconstructed Deep Neural Networks</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>E102.D</volume><issue>5</issue><spage>1037</spage><epage>1045</epage><pages>1037-1045</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>With the continuous refinement of Deep Neural Networks (DNNs), a series of deep and complex networks such as Residual Networks (ResNets) show impressive prediction accuracy in image classification tasks. Unfortunately, the structural complexity and computational cost of residual networks make hardware implementation difficult. In this paper, we present the quantized and reconstructed deep neural network (QR-DNN) technique, which first inserts batch normalization (BN) layers in the network during training, and later removes them to facilitate efficient hardware implementation. Moreover, an accurate and efficient residual network accelerator (RNA) is presented based on QR-DNN with batch-normalization-free structures and weights represented in a logarithmic number system. RNA employs a systolic array architecture to perform shift-and-accumulate operations instead of multiplication operations. QR-DNN is shown to achieve a 1∼2% improvement in accuracy over existing techniques, and RNA over previous best fixed-point accelerators. An FPGA implementation on a Xilinx Zynq XC7Z045 device achieves 804.03 GOPS, 104.15 FPS and 91.41% top-5 accuracy for the ResNet-50 benchmark, and state-of-the-art results are also reported for AlexNet and VGG.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2018RCP0008</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2019/05/01, Vol.E102.D(5), pp.1037-1045 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_journals_2303793534 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; EZB-FREE-00999 freely available EZB journals |
subjects | Accelerators Accuracy Artificial neural networks batch-normalization layers deep learning FPGA Hardware Image classification Inserts Multiplication Neural networks residual networks software-hardware co-design Task complexity |
title | RNA: An Accurate Residual Network Accelerator for Quantized and Reconstructed Deep Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA:%20An%20Accurate%20Residual%20Network%20Accelerator%20for%20Quantized%20and%20Reconstructed%20Deep%20Neural%20Networks&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=LUO,%20Cheng&rft.date=2019-05-01&rft.volume=E102.D&rft.issue=5&rft.spage=1037&rft.epage=1045&rft.pages=1037-1045&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2018RCP0008&rft_dat=%3Cproquest_cross%3E2303793534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303793534&rft_id=info:pmid/&rfr_iscdi=true |