Conservative and entropy stable solid wall boundary conditions for the compressible Navier–Stokes equations: Adiabatic wall and heat entropy transfer
We present a novel technique for the imposition of non-linear entropy conservative and entropy stable solid wall boundary conditions for the compressible Navier–Stokes equations in the presence of an adiabatic wall, or a wall with a prescribed heat entropy flow. The procedure relies on the formalism...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2019-11, Vol.397, p.108775, Article 108775 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108775 |
container_title | Journal of computational physics |
container_volume | 397 |
creator | Dalcin, Lisandro Rojas, Diego Zampini, Stefano Del Rey Fernández, David C. Carpenter, Mark H. Parsani, Matteo |
description | We present a novel technique for the imposition of non-linear entropy conservative and entropy stable solid wall boundary conditions for the compressible Navier–Stokes equations in the presence of an adiabatic wall, or a wall with a prescribed heat entropy flow. The procedure relies on the formalism and mimetic properties of diagonal-norm, summation-by-parts and simultaneous-approximation-term operators, and is a generalization of previous works on discontinuous interface coupling [1] and solid wall boundary conditions [2]. Using the method of lines, a semi-discrete entropy estimate for the entire domain is obtained when the proposed numerical imposition of boundary conditions are coupled with an entropy-conservative or entropy-stable discrete interior operator. The resulting estimate mimics the global entropy estimate obtained at the continuous level. The boundary data at the wall are weakly imposed using a penalty flux approach and a simultaneous-approximation-term technique for both the conservative variables and the gradient of the entropy variables. Discontinuous spectral collocation operators (mass lumped nodal discontinuous Galerkin operators), on high-order unstructured grids, are used for the purpose of demonstrating the robustness and efficacy of the new procedure for weakly enforcing boundary conditions. Numerical simulations confirm the non-linear stability of the proposed technique, with applications to three-dimensional subsonic and supersonic flows. The procedure described is compatible with any diagonal-norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction schemes. |
doi_str_mv | 10.1016/j.jcp.2019.06.051 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2303705884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999119304590</els_id><sourcerecordid>2303705884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-5718c18b44a3494b492695a900d125dc46962ac731b7720b0ac9f8a0211de12b3</originalsourceid><addsrcrecordid>eNp9kM1u1TAQRi1EJS4tD8DOEuuEGefXsKquKCBVsKCsLceeqA5pnNq-F3XHO7Dg_fokOFzEktXIo-_MZx3GXiKUCNi-nsrJrKUAlCW0JTT4hO0QJBSiw_Yp2wEILKSU-Iw9j3ECgL6p-x37tfdLpHDUyR2J68VyWlLw6wOPSQ8z8ehnZ_l3Pc988IfF6vDAjV-sSy6TfPSBp1vKq7s1UIxuYz7po6Pw-OPnl-S_UeR0f9B_4m_4pXV6yA9zOrkV3pJO_1pT0EscKVyws1HPkV78nefs69W7m_2H4vrz-4_7y-vCVG2fiqbD3mA_1LWualkPtRStbLQEsCgaa-pWtkKbrsKh6wQMoI0ce51loCUUQ3XOXp3ursHfHygmNflDWHKlEhVUHTR9X-cUnlIm-BgDjWoN7i6rUAhq868mlf2rzb-CVmX_mXl7Yih_f_OhonG0GLIukEnKevcf-jctZ5Fu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303705884</pqid></control><display><type>article</type><title>Conservative and entropy stable solid wall boundary conditions for the compressible Navier–Stokes equations: Adiabatic wall and heat entropy transfer</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Dalcin, Lisandro ; Rojas, Diego ; Zampini, Stefano ; Del Rey Fernández, David C. ; Carpenter, Mark H. ; Parsani, Matteo</creator><creatorcontrib>Dalcin, Lisandro ; Rojas, Diego ; Zampini, Stefano ; Del Rey Fernández, David C. ; Carpenter, Mark H. ; Parsani, Matteo</creatorcontrib><description>We present a novel technique for the imposition of non-linear entropy conservative and entropy stable solid wall boundary conditions for the compressible Navier–Stokes equations in the presence of an adiabatic wall, or a wall with a prescribed heat entropy flow. The procedure relies on the formalism and mimetic properties of diagonal-norm, summation-by-parts and simultaneous-approximation-term operators, and is a generalization of previous works on discontinuous interface coupling [1] and solid wall boundary conditions [2]. Using the method of lines, a semi-discrete entropy estimate for the entire domain is obtained when the proposed numerical imposition of boundary conditions are coupled with an entropy-conservative or entropy-stable discrete interior operator. The resulting estimate mimics the global entropy estimate obtained at the continuous level. The boundary data at the wall are weakly imposed using a penalty flux approach and a simultaneous-approximation-term technique for both the conservative variables and the gradient of the entropy variables. Discontinuous spectral collocation operators (mass lumped nodal discontinuous Galerkin operators), on high-order unstructured grids, are used for the purpose of demonstrating the robustness and efficacy of the new procedure for weakly enforcing boundary conditions. Numerical simulations confirm the non-linear stability of the proposed technique, with applications to three-dimensional subsonic and supersonic flows. The procedure described is compatible with any diagonal-norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction schemes.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2019.06.051</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Adiabatic flow ; Approximation ; Boundary conditions ; Compressibility ; Compressible Navier–Stokes equations ; Computational fluid dynamics ; Computational physics ; Computer simulation ; Dimensional stability ; Entropy ; Entropy conservation ; Entropy stability ; Finite difference method ; Fluid flow ; Galerkin method ; Method of lines ; Navier-Stokes equations ; Operators ; Robustness (mathematics) ; Simultaneous-approximation-terms ; Solid wall ; Summation-by-parts operators ; Supersonic flow ; Three dimensional flow ; Unstructured grids (mathematics)</subject><ispartof>Journal of computational physics, 2019-11, Vol.397, p.108775, Article 108775</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Nov 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-5718c18b44a3494b492695a900d125dc46962ac731b7720b0ac9f8a0211de12b3</citedby><cites>FETCH-LOGICAL-c368t-5718c18b44a3494b492695a900d125dc46962ac731b7720b0ac9f8a0211de12b3</cites><orcidid>0000-0002-4522-4062 ; 0000-0001-7300-1280 ; 0000-0001-8086-0155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2019.06.051$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Dalcin, Lisandro</creatorcontrib><creatorcontrib>Rojas, Diego</creatorcontrib><creatorcontrib>Zampini, Stefano</creatorcontrib><creatorcontrib>Del Rey Fernández, David C.</creatorcontrib><creatorcontrib>Carpenter, Mark H.</creatorcontrib><creatorcontrib>Parsani, Matteo</creatorcontrib><title>Conservative and entropy stable solid wall boundary conditions for the compressible Navier–Stokes equations: Adiabatic wall and heat entropy transfer</title><title>Journal of computational physics</title><description>We present a novel technique for the imposition of non-linear entropy conservative and entropy stable solid wall boundary conditions for the compressible Navier–Stokes equations in the presence of an adiabatic wall, or a wall with a prescribed heat entropy flow. The procedure relies on the formalism and mimetic properties of diagonal-norm, summation-by-parts and simultaneous-approximation-term operators, and is a generalization of previous works on discontinuous interface coupling [1] and solid wall boundary conditions [2]. Using the method of lines, a semi-discrete entropy estimate for the entire domain is obtained when the proposed numerical imposition of boundary conditions are coupled with an entropy-conservative or entropy-stable discrete interior operator. The resulting estimate mimics the global entropy estimate obtained at the continuous level. The boundary data at the wall are weakly imposed using a penalty flux approach and a simultaneous-approximation-term technique for both the conservative variables and the gradient of the entropy variables. Discontinuous spectral collocation operators (mass lumped nodal discontinuous Galerkin operators), on high-order unstructured grids, are used for the purpose of demonstrating the robustness and efficacy of the new procedure for weakly enforcing boundary conditions. Numerical simulations confirm the non-linear stability of the proposed technique, with applications to three-dimensional subsonic and supersonic flows. The procedure described is compatible with any diagonal-norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction schemes.</description><subject>Adiabatic flow</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Compressibility</subject><subject>Compressible Navier–Stokes equations</subject><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Dimensional stability</subject><subject>Entropy</subject><subject>Entropy conservation</subject><subject>Entropy stability</subject><subject>Finite difference method</subject><subject>Fluid flow</subject><subject>Galerkin method</subject><subject>Method of lines</subject><subject>Navier-Stokes equations</subject><subject>Operators</subject><subject>Robustness (mathematics)</subject><subject>Simultaneous-approximation-terms</subject><subject>Solid wall</subject><subject>Summation-by-parts operators</subject><subject>Supersonic flow</subject><subject>Three dimensional flow</subject><subject>Unstructured grids (mathematics)</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u1TAQRi1EJS4tD8DOEuuEGefXsKquKCBVsKCsLceeqA5pnNq-F3XHO7Dg_fokOFzEktXIo-_MZx3GXiKUCNi-nsrJrKUAlCW0JTT4hO0QJBSiw_Yp2wEILKSU-Iw9j3ECgL6p-x37tfdLpHDUyR2J68VyWlLw6wOPSQ8z8ehnZ_l3Pc988IfF6vDAjV-sSy6TfPSBp1vKq7s1UIxuYz7po6Pw-OPnl-S_UeR0f9B_4m_4pXV6yA9zOrkV3pJO_1pT0EscKVyws1HPkV78nefs69W7m_2H4vrz-4_7y-vCVG2fiqbD3mA_1LWualkPtRStbLQEsCgaa-pWtkKbrsKh6wQMoI0ce51loCUUQ3XOXp3ursHfHygmNflDWHKlEhVUHTR9X-cUnlIm-BgDjWoN7i6rUAhq868mlf2rzb-CVmX_mXl7Yih_f_OhonG0GLIukEnKevcf-jctZ5Fu</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Dalcin, Lisandro</creator><creator>Rojas, Diego</creator><creator>Zampini, Stefano</creator><creator>Del Rey Fernández, David C.</creator><creator>Carpenter, Mark H.</creator><creator>Parsani, Matteo</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4522-4062</orcidid><orcidid>https://orcid.org/0000-0001-7300-1280</orcidid><orcidid>https://orcid.org/0000-0001-8086-0155</orcidid></search><sort><creationdate>20191115</creationdate><title>Conservative and entropy stable solid wall boundary conditions for the compressible Navier–Stokes equations: Adiabatic wall and heat entropy transfer</title><author>Dalcin, Lisandro ; Rojas, Diego ; Zampini, Stefano ; Del Rey Fernández, David C. ; Carpenter, Mark H. ; Parsani, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-5718c18b44a3494b492695a900d125dc46962ac731b7720b0ac9f8a0211de12b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adiabatic flow</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Compressibility</topic><topic>Compressible Navier–Stokes equations</topic><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Dimensional stability</topic><topic>Entropy</topic><topic>Entropy conservation</topic><topic>Entropy stability</topic><topic>Finite difference method</topic><topic>Fluid flow</topic><topic>Galerkin method</topic><topic>Method of lines</topic><topic>Navier-Stokes equations</topic><topic>Operators</topic><topic>Robustness (mathematics)</topic><topic>Simultaneous-approximation-terms</topic><topic>Solid wall</topic><topic>Summation-by-parts operators</topic><topic>Supersonic flow</topic><topic>Three dimensional flow</topic><topic>Unstructured grids (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalcin, Lisandro</creatorcontrib><creatorcontrib>Rojas, Diego</creatorcontrib><creatorcontrib>Zampini, Stefano</creatorcontrib><creatorcontrib>Del Rey Fernández, David C.</creatorcontrib><creatorcontrib>Carpenter, Mark H.</creatorcontrib><creatorcontrib>Parsani, Matteo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalcin, Lisandro</au><au>Rojas, Diego</au><au>Zampini, Stefano</au><au>Del Rey Fernández, David C.</au><au>Carpenter, Mark H.</au><au>Parsani, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservative and entropy stable solid wall boundary conditions for the compressible Navier–Stokes equations: Adiabatic wall and heat entropy transfer</atitle><jtitle>Journal of computational physics</jtitle><date>2019-11-15</date><risdate>2019</risdate><volume>397</volume><spage>108775</spage><pages>108775-</pages><artnum>108775</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present a novel technique for the imposition of non-linear entropy conservative and entropy stable solid wall boundary conditions for the compressible Navier–Stokes equations in the presence of an adiabatic wall, or a wall with a prescribed heat entropy flow. The procedure relies on the formalism and mimetic properties of diagonal-norm, summation-by-parts and simultaneous-approximation-term operators, and is a generalization of previous works on discontinuous interface coupling [1] and solid wall boundary conditions [2]. Using the method of lines, a semi-discrete entropy estimate for the entire domain is obtained when the proposed numerical imposition of boundary conditions are coupled with an entropy-conservative or entropy-stable discrete interior operator. The resulting estimate mimics the global entropy estimate obtained at the continuous level. The boundary data at the wall are weakly imposed using a penalty flux approach and a simultaneous-approximation-term technique for both the conservative variables and the gradient of the entropy variables. Discontinuous spectral collocation operators (mass lumped nodal discontinuous Galerkin operators), on high-order unstructured grids, are used for the purpose of demonstrating the robustness and efficacy of the new procedure for weakly enforcing boundary conditions. Numerical simulations confirm the non-linear stability of the proposed technique, with applications to three-dimensional subsonic and supersonic flows. The procedure described is compatible with any diagonal-norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction schemes.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2019.06.051</doi><orcidid>https://orcid.org/0000-0002-4522-4062</orcidid><orcidid>https://orcid.org/0000-0001-7300-1280</orcidid><orcidid>https://orcid.org/0000-0001-8086-0155</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2019-11, Vol.397, p.108775, Article 108775 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2303705884 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Adiabatic flow Approximation Boundary conditions Compressibility Compressible Navier–Stokes equations Computational fluid dynamics Computational physics Computer simulation Dimensional stability Entropy Entropy conservation Entropy stability Finite difference method Fluid flow Galerkin method Method of lines Navier-Stokes equations Operators Robustness (mathematics) Simultaneous-approximation-terms Solid wall Summation-by-parts operators Supersonic flow Three dimensional flow Unstructured grids (mathematics) |
title | Conservative and entropy stable solid wall boundary conditions for the compressible Navier–Stokes equations: Adiabatic wall and heat entropy transfer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservative%20and%20entropy%20stable%20solid%20wall%20boundary%20conditions%20for%20the%20compressible%20Navier%E2%80%93Stokes%20equations:%20Adiabatic%20wall%20and%20heat%20entropy%20transfer&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Dalcin,%20Lisandro&rft.date=2019-11-15&rft.volume=397&rft.spage=108775&rft.pages=108775-&rft.artnum=108775&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2019.06.051&rft_dat=%3Cproquest_cross%3E2303705884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303705884&rft_id=info:pmid/&rft_els_id=S0021999119304590&rfr_iscdi=true |