Distilling Importance Sampling for Likelihood Free Inference

Likelihood-free inference involves inferring parameter values given observed data and a simulator model. The simulator is computer code which takes parameters, performs stochastic calculations, and outputs simulated data. In this work, we view the simulator as a function whose inputs are (1) the par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-01
Hauptverfasser: Prangle, Dennis, Viscardi, Cecilia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Prangle, Dennis
Viscardi, Cecilia
description Likelihood-free inference involves inferring parameter values given observed data and a simulator model. The simulator is computer code which takes parameters, performs stochastic calculations, and outputs simulated data. In this work, we view the simulator as a function whose inputs are (1) the parameters and (2) a vector of pseudo-random draws. We attempt to infer all these inputs conditional on the observations. This is challenging as the resulting posterior can be high dimensional and involve strong dependence. We approximate the posterior using normalizing flows, a flexible parametric family of densities. Training data is generated by likelihood-free importance sampling with a large bandwidth value epsilon, which makes the target similar to the prior. The training data is "distilled" by using it to train an updated normalizing flow. The process is iterated, using the updated flow as the importance sampling proposal, and slowly reducing epsilon so the target becomes closer to the posterior. Unlike most other likelihood-free methods, we avoid the need to reduce data to low dimensional summary statistics, and hence can achieve more accurate results. We illustrate our method in two challenging examples, on queuing and epidemiology.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2303449826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2303449826</sourcerecordid><originalsourceid>FETCH-proquest_journals_23034498263</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwccksLsnMycnMS1fwzC3ILypJzEtOVQhOzC0Ai6XlFyn4ZGan5mRm5OenKLgVpaYqeOalpRalApXxMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kbGBsYmJpYWRmTFxqgBEDTeP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303449826</pqid></control><display><type>article</type><title>Distilling Importance Sampling for Likelihood Free Inference</title><source>Free E- Journals</source><creator>Prangle, Dennis ; Viscardi, Cecilia</creator><creatorcontrib>Prangle, Dennis ; Viscardi, Cecilia</creatorcontrib><description>Likelihood-free inference involves inferring parameter values given observed data and a simulator model. The simulator is computer code which takes parameters, performs stochastic calculations, and outputs simulated data. In this work, we view the simulator as a function whose inputs are (1) the parameters and (2) a vector of pseudo-random draws. We attempt to infer all these inputs conditional on the observations. This is challenging as the resulting posterior can be high dimensional and involve strong dependence. We approximate the posterior using normalizing flows, a flexible parametric family of densities. Training data is generated by likelihood-free importance sampling with a large bandwidth value epsilon, which makes the target similar to the prior. The training data is "distilled" by using it to train an updated normalizing flow. The process is iterated, using the updated flow as the importance sampling proposal, and slowly reducing epsilon so the target becomes closer to the posterior. Unlike most other likelihood-free methods, we avoid the need to reduce data to low dimensional summary statistics, and hence can achieve more accurate results. We illustrate our method in two challenging examples, on queuing and epidemiology.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Bayesian analysis ; Density ; Distillation ; Importance sampling ; Markov analysis ; Optimization ; Queues ; Sampling methods ; Sampling techniques ; Statistical inference</subject><ispartof>arXiv.org, 2023-01</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Prangle, Dennis</creatorcontrib><creatorcontrib>Viscardi, Cecilia</creatorcontrib><title>Distilling Importance Sampling for Likelihood Free Inference</title><title>arXiv.org</title><description>Likelihood-free inference involves inferring parameter values given observed data and a simulator model. The simulator is computer code which takes parameters, performs stochastic calculations, and outputs simulated data. In this work, we view the simulator as a function whose inputs are (1) the parameters and (2) a vector of pseudo-random draws. We attempt to infer all these inputs conditional on the observations. This is challenging as the resulting posterior can be high dimensional and involve strong dependence. We approximate the posterior using normalizing flows, a flexible parametric family of densities. Training data is generated by likelihood-free importance sampling with a large bandwidth value epsilon, which makes the target similar to the prior. The training data is "distilled" by using it to train an updated normalizing flow. The process is iterated, using the updated flow as the importance sampling proposal, and slowly reducing epsilon so the target becomes closer to the posterior. Unlike most other likelihood-free methods, we avoid the need to reduce data to low dimensional summary statistics, and hence can achieve more accurate results. We illustrate our method in two challenging examples, on queuing and epidemiology.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Density</subject><subject>Distillation</subject><subject>Importance sampling</subject><subject>Markov analysis</subject><subject>Optimization</subject><subject>Queues</subject><subject>Sampling methods</subject><subject>Sampling techniques</subject><subject>Statistical inference</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwccksLsnMycnMS1fwzC3ILypJzEtOVQhOzC0Ai6XlFyn4ZGan5mRm5OenKLgVpaYqeOalpRalApXxMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kbGBsYmJpYWRmTFxqgBEDTeP</recordid><startdate>20230127</startdate><enddate>20230127</enddate><creator>Prangle, Dennis</creator><creator>Viscardi, Cecilia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230127</creationdate><title>Distilling Importance Sampling for Likelihood Free Inference</title><author>Prangle, Dennis ; Viscardi, Cecilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23034498263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Density</topic><topic>Distillation</topic><topic>Importance sampling</topic><topic>Markov analysis</topic><topic>Optimization</topic><topic>Queues</topic><topic>Sampling methods</topic><topic>Sampling techniques</topic><topic>Statistical inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Prangle, Dennis</creatorcontrib><creatorcontrib>Viscardi, Cecilia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prangle, Dennis</au><au>Viscardi, Cecilia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Distilling Importance Sampling for Likelihood Free Inference</atitle><jtitle>arXiv.org</jtitle><date>2023-01-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Likelihood-free inference involves inferring parameter values given observed data and a simulator model. The simulator is computer code which takes parameters, performs stochastic calculations, and outputs simulated data. In this work, we view the simulator as a function whose inputs are (1) the parameters and (2) a vector of pseudo-random draws. We attempt to infer all these inputs conditional on the observations. This is challenging as the resulting posterior can be high dimensional and involve strong dependence. We approximate the posterior using normalizing flows, a flexible parametric family of densities. Training data is generated by likelihood-free importance sampling with a large bandwidth value epsilon, which makes the target similar to the prior. The training data is "distilled" by using it to train an updated normalizing flow. The process is iterated, using the updated flow as the importance sampling proposal, and slowly reducing epsilon so the target becomes closer to the posterior. Unlike most other likelihood-free methods, we avoid the need to reduce data to low dimensional summary statistics, and hence can achieve more accurate results. We illustrate our method in two challenging examples, on queuing and epidemiology.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2303449826
source Free E- Journals
subjects Approximation
Bayesian analysis
Density
Distillation
Importance sampling
Markov analysis
Optimization
Queues
Sampling methods
Sampling techniques
Statistical inference
title Distilling Importance Sampling for Likelihood Free Inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Distilling%20Importance%20Sampling%20for%20Likelihood%20Free%20Inference&rft.jtitle=arXiv.org&rft.au=Prangle,%20Dennis&rft.date=2023-01-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2303449826%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303449826&rft_id=info:pmid/&rfr_iscdi=true