Supramolecular interactions between catalytic species allow rational control over reaction kinetics

The adaptivity of biological reaction networks largely arises through non-covalent regulation of catalysts' activity. Such type of catalyst control is still nascent in synthetic chemical networks and thereby hampers their ability to display life-like behavior. Here, we report a bio-inspired sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2019-10, Vol.1 (39), p.9115-9124
Hauptverfasser: Teunissen, Abraham J. P, Paffen, Tim F. E, Filot, Ivo A. W, Lanting, Menno D, van der Haas, Roy J. C, de Greef, Tom F. A, Meijer, E. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9124
container_issue 39
container_start_page 9115
container_title Chemical science (Cambridge)
container_volume 1
creator Teunissen, Abraham J. P
Paffen, Tim F. E
Filot, Ivo A. W
Lanting, Menno D
van der Haas, Roy J. C
de Greef, Tom F. A
Meijer, E. W
description The adaptivity of biological reaction networks largely arises through non-covalent regulation of catalysts' activity. Such type of catalyst control is still nascent in synthetic chemical networks and thereby hampers their ability to display life-like behavior. Here, we report a bio-inspired system in which non-covalent interactions between two complementary phase-transfer catalysts are used to regulate reaction kinetics. While one catalyst gives bimolecular kinetics, the second displays autoinductive feedback, resulting in sigmoidal kinetics. When both catalysts are combined, the interactions between them allow rational control over the shape of the kinetic curves. Computational models are used to gain insight into the structure, interplay, and activity of each catalytic species, and the scope of the system is examined by optimizing the linearity of the kinetic curves. Combined, our findings highlight the effectiveness of regulating reaction kinetics using non-covalent catalyst interactions, but also emphasize the risk for unforeseen catalytic contributions in complex systems and the necessity to combine detailed experiments with kinetic modelling. The non-covalent interactions between two phase-transfer catalysts allow tuning of reaction kinetics from bimolecular, to pseudo 0 th order, to sigmoidal. Kinetic models and DFT calculations are used to obtain detailed insight in the system.
doi_str_mv 10.1039/c9sc02357g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2303073265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325303597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-945a9b91c45d07a35172f82ca7c0ecf82a93db57f982468e075a298d452c60f53</originalsourceid><addsrcrecordid>eNpdkcFLXDEQxoO0VLFeelcCvRRh27zk5SW5FMqiVhB6sD2H2dl5Njb7sk3eU_zvzbp2bTuXGZjffHzMx9i7RnxshHKf0BUUUmlzs8cOpGibWaeVe7WbpdhnR6XcilpKNVqaN2xfNVYao9sDhtfTOsMqRcIpQuZhGCkDjiENhS9ovCcaOMII8WEMyMuaMFDhEGO65xk2HESOaRhzijzdUeaZtvf8VxioHpW37HUPsdDRcz9kP87Pvs-_zq6-XVzOv1zNsJV2nLlWg1u4Blu9FAaUbozsrUQwKAjrBE4tF9r0zsq2sySMBunsstUSO9Frdcg-b3XX02JFS6RqCqJf57CC_OATBP_vZgg__U268521zipXBT48C-T0e6Iy-lUoSDHCQGkqXiqplVDamYq-_w-9TVOuv9hQQgmjZLdxdLqlMKdSMvU7M43wm_j83F3Pn-K7qPDJ3_Z36J-wKnC8BXLB3fYlf_UIpXChRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303073265</pqid></control><display><type>article</type><title>Supramolecular interactions between catalytic species allow rational control over reaction kinetics</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Teunissen, Abraham J. P ; Paffen, Tim F. E ; Filot, Ivo A. W ; Lanting, Menno D ; van der Haas, Roy J. C ; de Greef, Tom F. A ; Meijer, E. W</creator><creatorcontrib>Teunissen, Abraham J. P ; Paffen, Tim F. E ; Filot, Ivo A. W ; Lanting, Menno D ; van der Haas, Roy J. C ; de Greef, Tom F. A ; Meijer, E. W</creatorcontrib><description>The adaptivity of biological reaction networks largely arises through non-covalent regulation of catalysts' activity. Such type of catalyst control is still nascent in synthetic chemical networks and thereby hampers their ability to display life-like behavior. Here, we report a bio-inspired system in which non-covalent interactions between two complementary phase-transfer catalysts are used to regulate reaction kinetics. While one catalyst gives bimolecular kinetics, the second displays autoinductive feedback, resulting in sigmoidal kinetics. When both catalysts are combined, the interactions between them allow rational control over the shape of the kinetic curves. Computational models are used to gain insight into the structure, interplay, and activity of each catalytic species, and the scope of the system is examined by optimizing the linearity of the kinetic curves. Combined, our findings highlight the effectiveness of regulating reaction kinetics using non-covalent catalyst interactions, but also emphasize the risk for unforeseen catalytic contributions in complex systems and the necessity to combine detailed experiments with kinetic modelling. The non-covalent interactions between two phase-transfer catalysts allow tuning of reaction kinetics from bimolecular, to pseudo 0 th order, to sigmoidal. Kinetic models and DFT calculations are used to obtain detailed insight in the system.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c9sc02357g</identifier><identifier>PMID: 31827754</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Complex systems ; Covalence ; Kinetics ; Linearity ; Organic chemistry ; Phase transfer catalysts ; Reaction kinetics</subject><ispartof>Chemical science (Cambridge), 2019-10, Vol.1 (39), p.9115-9124</ispartof><rights>This journal is © The Royal Society of Chemistry 2019.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-945a9b91c45d07a35172f82ca7c0ecf82a93db57f982468e075a298d452c60f53</citedby><cites>FETCH-LOGICAL-c428t-945a9b91c45d07a35172f82ca7c0ecf82a93db57f982468e075a298d452c60f53</cites><orcidid>0000-0002-9338-284X ; 0000-0003-4126-7492 ; 0000-0002-0401-8262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889839/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889839/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31827754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teunissen, Abraham J. P</creatorcontrib><creatorcontrib>Paffen, Tim F. E</creatorcontrib><creatorcontrib>Filot, Ivo A. W</creatorcontrib><creatorcontrib>Lanting, Menno D</creatorcontrib><creatorcontrib>van der Haas, Roy J. C</creatorcontrib><creatorcontrib>de Greef, Tom F. A</creatorcontrib><creatorcontrib>Meijer, E. W</creatorcontrib><title>Supramolecular interactions between catalytic species allow rational control over reaction kinetics</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>The adaptivity of biological reaction networks largely arises through non-covalent regulation of catalysts' activity. Such type of catalyst control is still nascent in synthetic chemical networks and thereby hampers their ability to display life-like behavior. Here, we report a bio-inspired system in which non-covalent interactions between two complementary phase-transfer catalysts are used to regulate reaction kinetics. While one catalyst gives bimolecular kinetics, the second displays autoinductive feedback, resulting in sigmoidal kinetics. When both catalysts are combined, the interactions between them allow rational control over the shape of the kinetic curves. Computational models are used to gain insight into the structure, interplay, and activity of each catalytic species, and the scope of the system is examined by optimizing the linearity of the kinetic curves. Combined, our findings highlight the effectiveness of regulating reaction kinetics using non-covalent catalyst interactions, but also emphasize the risk for unforeseen catalytic contributions in complex systems and the necessity to combine detailed experiments with kinetic modelling. The non-covalent interactions between two phase-transfer catalysts allow tuning of reaction kinetics from bimolecular, to pseudo 0 th order, to sigmoidal. Kinetic models and DFT calculations are used to obtain detailed insight in the system.</description><subject>Chemistry</subject><subject>Complex systems</subject><subject>Covalence</subject><subject>Kinetics</subject><subject>Linearity</subject><subject>Organic chemistry</subject><subject>Phase transfer catalysts</subject><subject>Reaction kinetics</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkcFLXDEQxoO0VLFeelcCvRRh27zk5SW5FMqiVhB6sD2H2dl5Njb7sk3eU_zvzbp2bTuXGZjffHzMx9i7RnxshHKf0BUUUmlzs8cOpGibWaeVe7WbpdhnR6XcilpKNVqaN2xfNVYao9sDhtfTOsMqRcIpQuZhGCkDjiENhS9ovCcaOMII8WEMyMuaMFDhEGO65xk2HESOaRhzijzdUeaZtvf8VxioHpW37HUPsdDRcz9kP87Pvs-_zq6-XVzOv1zNsJV2nLlWg1u4Blu9FAaUbozsrUQwKAjrBE4tF9r0zsq2sySMBunsstUSO9Frdcg-b3XX02JFS6RqCqJf57CC_OATBP_vZgg__U268521zipXBT48C-T0e6Iy-lUoSDHCQGkqXiqplVDamYq-_w-9TVOuv9hQQgmjZLdxdLqlMKdSMvU7M43wm_j83F3Pn-K7qPDJ3_Z36J-wKnC8BXLB3fYlf_UIpXChRg</recordid><startdate>20191021</startdate><enddate>20191021</enddate><creator>Teunissen, Abraham J. P</creator><creator>Paffen, Tim F. E</creator><creator>Filot, Ivo A. W</creator><creator>Lanting, Menno D</creator><creator>van der Haas, Roy J. C</creator><creator>de Greef, Tom F. A</creator><creator>Meijer, E. W</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9338-284X</orcidid><orcidid>https://orcid.org/0000-0003-4126-7492</orcidid><orcidid>https://orcid.org/0000-0002-0401-8262</orcidid></search><sort><creationdate>20191021</creationdate><title>Supramolecular interactions between catalytic species allow rational control over reaction kinetics</title><author>Teunissen, Abraham J. P ; Paffen, Tim F. E ; Filot, Ivo A. W ; Lanting, Menno D ; van der Haas, Roy J. C ; de Greef, Tom F. A ; Meijer, E. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-945a9b91c45d07a35172f82ca7c0ecf82a93db57f982468e075a298d452c60f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry</topic><topic>Complex systems</topic><topic>Covalence</topic><topic>Kinetics</topic><topic>Linearity</topic><topic>Organic chemistry</topic><topic>Phase transfer catalysts</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teunissen, Abraham J. P</creatorcontrib><creatorcontrib>Paffen, Tim F. E</creatorcontrib><creatorcontrib>Filot, Ivo A. W</creatorcontrib><creatorcontrib>Lanting, Menno D</creatorcontrib><creatorcontrib>van der Haas, Roy J. C</creatorcontrib><creatorcontrib>de Greef, Tom F. A</creatorcontrib><creatorcontrib>Meijer, E. W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teunissen, Abraham J. P</au><au>Paffen, Tim F. E</au><au>Filot, Ivo A. W</au><au>Lanting, Menno D</au><au>van der Haas, Roy J. C</au><au>de Greef, Tom F. A</au><au>Meijer, E. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supramolecular interactions between catalytic species allow rational control over reaction kinetics</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2019-10-21</date><risdate>2019</risdate><volume>1</volume><issue>39</issue><spage>9115</spage><epage>9124</epage><pages>9115-9124</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The adaptivity of biological reaction networks largely arises through non-covalent regulation of catalysts' activity. Such type of catalyst control is still nascent in synthetic chemical networks and thereby hampers their ability to display life-like behavior. Here, we report a bio-inspired system in which non-covalent interactions between two complementary phase-transfer catalysts are used to regulate reaction kinetics. While one catalyst gives bimolecular kinetics, the second displays autoinductive feedback, resulting in sigmoidal kinetics. When both catalysts are combined, the interactions between them allow rational control over the shape of the kinetic curves. Computational models are used to gain insight into the structure, interplay, and activity of each catalytic species, and the scope of the system is examined by optimizing the linearity of the kinetic curves. Combined, our findings highlight the effectiveness of regulating reaction kinetics using non-covalent catalyst interactions, but also emphasize the risk for unforeseen catalytic contributions in complex systems and the necessity to combine detailed experiments with kinetic modelling. The non-covalent interactions between two phase-transfer catalysts allow tuning of reaction kinetics from bimolecular, to pseudo 0 th order, to sigmoidal. Kinetic models and DFT calculations are used to obtain detailed insight in the system.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31827754</pmid><doi>10.1039/c9sc02357g</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9338-284X</orcidid><orcidid>https://orcid.org/0000-0003-4126-7492</orcidid><orcidid>https://orcid.org/0000-0002-0401-8262</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2019-10, Vol.1 (39), p.9115-9124
issn 2041-6520
2041-6539
language eng
recordid cdi_proquest_journals_2303073265
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Chemistry
Complex systems
Covalence
Kinetics
Linearity
Organic chemistry
Phase transfer catalysts
Reaction kinetics
title Supramolecular interactions between catalytic species allow rational control over reaction kinetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supramolecular%20interactions%20between%20catalytic%20species%20allow%20rational%20control%20over%20reaction%20kinetics&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Teunissen,%20Abraham%20J.%20P&rft.date=2019-10-21&rft.volume=1&rft.issue=39&rft.spage=9115&rft.epage=9124&rft.pages=9115-9124&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c9sc02357g&rft_dat=%3Cproquest_cross%3E2325303597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303073265&rft_id=info:pmid/31827754&rfr_iscdi=true