Nickel formate induced high-level in situ Ni-doping of g-C3N4 for a tunable band structure and enhanced photocatalytic performance

Metal doping is considered as an effective strategy to modify the electronic structure, optical absorption and charge separation of g-C3N4, thereby improving its photocatalytic activity for energy supply and environmental remediation. Herein, nickel formate is utilized for the first time for in situ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (39), p.22385-22397
Hauptverfasser: Deng, Peiqin, Xiong, Jinsong, Shuijin Lei, Wang, Wei, Ou, Xiuling, Xu, Yueling, Xiao, Yanhe, Cheng, Baochang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22397
container_issue 39
container_start_page 22385
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Deng, Peiqin
Xiong, Jinsong
Shuijin Lei
Wang, Wei
Ou, Xiuling
Xu, Yueling
Xiao, Yanhe
Cheng, Baochang
description Metal doping is considered as an effective strategy to modify the electronic structure, optical absorption and charge separation of g-C3N4, thereby improving its photocatalytic activity for energy supply and environmental remediation. Herein, nickel formate is utilized for the first time for in situ Ni-doping of g-C3N4 nanosheets at a very high level via a one-step pyrolysis. Experimental results reveal the enhanced and expanded visible light absorption, narrowed band gap and suppressed charge recombination with the incorporation of Ni species. Furthermore, the positions of the valence band and conduction band of the g-C3N4 samples can also be easily modulated by Ni-doping. All of this enables superior photocatalytic activity of the obtained Ni-doped g-C3N4 in both dye degradation and hydrogen evolution under visible light compared with pure g-C3N4. Photocatalytic tests demonstrate that the Ni-doped g-C3N4 sample with an appropriate doping concentration can give a rate constant approximately 10 times greater than that of bare g-C3N4 for degradation of methyl orange, and can exhibit a hydrogen evolution rate of up to 155.71 μmol g−1 h−1, about 1.6 times as high as that of pure g-C3N4. This work introduces a new rational design for metal-doped g-C3N4 as an efficient visible-light-driven photocatalyst.
doi_str_mv 10.1039/c9ta04559g
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2302913782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2302913782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-4499f346e23f9b81389d9b199c6f407d5401b6cc7c700195062f953a19dba8aa3</originalsourceid><addsrcrecordid>eNo9TUtPwzAYixBITGMXfkEkzoGkSdN8RzTxmDSNC5ynNI82o6SlTZC48svpAOGLbVm2Ebpk9JpRDjcGkqaiLKE5QYuClpRUAuTpv1bqHK2m6UBnKEolwAJ97YJ5dR32_fimk8Mh2mycxW1oWtK5jzkKEU8hZbwLxPZDiA3uPW7Imu_EsYY1TjnqunO41tHiKY3ZpDw6fHQutjoeB4e2T73RSXefKRg8uPHncs4u0JnX3eRWf7xEL_d3z-tHsn162Kxvt8QUkiUiBIDnQrqCe6gV4wos1AzASC9oZUtBWS2NqUxFKYOSysJDyTUDW2ulNV-iq9_dYezfs5vS_tDnMc6X-4LTAhivVMG_AQYFYlE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302913782</pqid></control><display><type>article</type><title>Nickel formate induced high-level in situ Ni-doping of g-C3N4 for a tunable band structure and enhanced photocatalytic performance</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Deng, Peiqin ; Xiong, Jinsong ; Shuijin Lei ; Wang, Wei ; Ou, Xiuling ; Xu, Yueling ; Xiao, Yanhe ; Cheng, Baochang</creator><creatorcontrib>Deng, Peiqin ; Xiong, Jinsong ; Shuijin Lei ; Wang, Wei ; Ou, Xiuling ; Xu, Yueling ; Xiao, Yanhe ; Cheng, Baochang</creatorcontrib><description>Metal doping is considered as an effective strategy to modify the electronic structure, optical absorption and charge separation of g-C3N4, thereby improving its photocatalytic activity for energy supply and environmental remediation. Herein, nickel formate is utilized for the first time for in situ Ni-doping of g-C3N4 nanosheets at a very high level via a one-step pyrolysis. Experimental results reveal the enhanced and expanded visible light absorption, narrowed band gap and suppressed charge recombination with the incorporation of Ni species. Furthermore, the positions of the valence band and conduction band of the g-C3N4 samples can also be easily modulated by Ni-doping. All of this enables superior photocatalytic activity of the obtained Ni-doped g-C3N4 in both dye degradation and hydrogen evolution under visible light compared with pure g-C3N4. Photocatalytic tests demonstrate that the Ni-doped g-C3N4 sample with an appropriate doping concentration can give a rate constant approximately 10 times greater than that of bare g-C3N4 for degradation of methyl orange, and can exhibit a hydrogen evolution rate of up to 155.71 μmol g−1 h−1, about 1.6 times as high as that of pure g-C3N4. This work introduces a new rational design for metal-doped g-C3N4 as an efficient visible-light-driven photocatalyst.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta04559g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption ; Carbon nitride ; Catalytic activity ; Conduction ; Conduction bands ; Degradation ; Doping ; Dyes ; Electromagnetic absorption ; Electronic structure ; Hydrogen evolution ; Metals ; Nickel ; Photocatalysis ; Pyrolysis ; Recombination ; Valence band</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (39), p.22385-22397</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-4499f346e23f9b81389d9b199c6f407d5401b6cc7c700195062f953a19dba8aa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Deng, Peiqin</creatorcontrib><creatorcontrib>Xiong, Jinsong</creatorcontrib><creatorcontrib>Shuijin Lei</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Ou, Xiuling</creatorcontrib><creatorcontrib>Xu, Yueling</creatorcontrib><creatorcontrib>Xiao, Yanhe</creatorcontrib><creatorcontrib>Cheng, Baochang</creatorcontrib><title>Nickel formate induced high-level in situ Ni-doping of g-C3N4 for a tunable band structure and enhanced photocatalytic performance</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Metal doping is considered as an effective strategy to modify the electronic structure, optical absorption and charge separation of g-C3N4, thereby improving its photocatalytic activity for energy supply and environmental remediation. Herein, nickel formate is utilized for the first time for in situ Ni-doping of g-C3N4 nanosheets at a very high level via a one-step pyrolysis. Experimental results reveal the enhanced and expanded visible light absorption, narrowed band gap and suppressed charge recombination with the incorporation of Ni species. Furthermore, the positions of the valence band and conduction band of the g-C3N4 samples can also be easily modulated by Ni-doping. All of this enables superior photocatalytic activity of the obtained Ni-doped g-C3N4 in both dye degradation and hydrogen evolution under visible light compared with pure g-C3N4. Photocatalytic tests demonstrate that the Ni-doped g-C3N4 sample with an appropriate doping concentration can give a rate constant approximately 10 times greater than that of bare g-C3N4 for degradation of methyl orange, and can exhibit a hydrogen evolution rate of up to 155.71 μmol g−1 h−1, about 1.6 times as high as that of pure g-C3N4. This work introduces a new rational design for metal-doped g-C3N4 as an efficient visible-light-driven photocatalyst.</description><subject>Absorption</subject><subject>Carbon nitride</subject><subject>Catalytic activity</subject><subject>Conduction</subject><subject>Conduction bands</subject><subject>Degradation</subject><subject>Doping</subject><subject>Dyes</subject><subject>Electromagnetic absorption</subject><subject>Electronic structure</subject><subject>Hydrogen evolution</subject><subject>Metals</subject><subject>Nickel</subject><subject>Photocatalysis</subject><subject>Pyrolysis</subject><subject>Recombination</subject><subject>Valence band</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9TUtPwzAYixBITGMXfkEkzoGkSdN8RzTxmDSNC5ynNI82o6SlTZC48svpAOGLbVm2Ebpk9JpRDjcGkqaiLKE5QYuClpRUAuTpv1bqHK2m6UBnKEolwAJ97YJ5dR32_fimk8Mh2mycxW1oWtK5jzkKEU8hZbwLxPZDiA3uPW7Imu_EsYY1TjnqunO41tHiKY3ZpDw6fHQutjoeB4e2T73RSXefKRg8uPHncs4u0JnX3eRWf7xEL_d3z-tHsn162Kxvt8QUkiUiBIDnQrqCe6gV4wos1AzASC9oZUtBWS2NqUxFKYOSysJDyTUDW2ulNV-iq9_dYezfs5vS_tDnMc6X-4LTAhivVMG_AQYFYlE</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Deng, Peiqin</creator><creator>Xiong, Jinsong</creator><creator>Shuijin Lei</creator><creator>Wang, Wei</creator><creator>Ou, Xiuling</creator><creator>Xu, Yueling</creator><creator>Xiao, Yanhe</creator><creator>Cheng, Baochang</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2019</creationdate><title>Nickel formate induced high-level in situ Ni-doping of g-C3N4 for a tunable band structure and enhanced photocatalytic performance</title><author>Deng, Peiqin ; Xiong, Jinsong ; Shuijin Lei ; Wang, Wei ; Ou, Xiuling ; Xu, Yueling ; Xiao, Yanhe ; Cheng, Baochang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-4499f346e23f9b81389d9b199c6f407d5401b6cc7c700195062f953a19dba8aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Carbon nitride</topic><topic>Catalytic activity</topic><topic>Conduction</topic><topic>Conduction bands</topic><topic>Degradation</topic><topic>Doping</topic><topic>Dyes</topic><topic>Electromagnetic absorption</topic><topic>Electronic structure</topic><topic>Hydrogen evolution</topic><topic>Metals</topic><topic>Nickel</topic><topic>Photocatalysis</topic><topic>Pyrolysis</topic><topic>Recombination</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Peiqin</creatorcontrib><creatorcontrib>Xiong, Jinsong</creatorcontrib><creatorcontrib>Shuijin Lei</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Ou, Xiuling</creatorcontrib><creatorcontrib>Xu, Yueling</creatorcontrib><creatorcontrib>Xiao, Yanhe</creatorcontrib><creatorcontrib>Cheng, Baochang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Peiqin</au><au>Xiong, Jinsong</au><au>Shuijin Lei</au><au>Wang, Wei</au><au>Ou, Xiuling</au><au>Xu, Yueling</au><au>Xiao, Yanhe</au><au>Cheng, Baochang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nickel formate induced high-level in situ Ni-doping of g-C3N4 for a tunable band structure and enhanced photocatalytic performance</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>39</issue><spage>22385</spage><epage>22397</epage><pages>22385-22397</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Metal doping is considered as an effective strategy to modify the electronic structure, optical absorption and charge separation of g-C3N4, thereby improving its photocatalytic activity for energy supply and environmental remediation. Herein, nickel formate is utilized for the first time for in situ Ni-doping of g-C3N4 nanosheets at a very high level via a one-step pyrolysis. Experimental results reveal the enhanced and expanded visible light absorption, narrowed band gap and suppressed charge recombination with the incorporation of Ni species. Furthermore, the positions of the valence band and conduction band of the g-C3N4 samples can also be easily modulated by Ni-doping. All of this enables superior photocatalytic activity of the obtained Ni-doped g-C3N4 in both dye degradation and hydrogen evolution under visible light compared with pure g-C3N4. Photocatalytic tests demonstrate that the Ni-doped g-C3N4 sample with an appropriate doping concentration can give a rate constant approximately 10 times greater than that of bare g-C3N4 for degradation of methyl orange, and can exhibit a hydrogen evolution rate of up to 155.71 μmol g−1 h−1, about 1.6 times as high as that of pure g-C3N4. This work introduces a new rational design for metal-doped g-C3N4 as an efficient visible-light-driven photocatalyst.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta04559g</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (39), p.22385-22397
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2302913782
source Royal Society Of Chemistry Journals 2008-
subjects Absorption
Carbon nitride
Catalytic activity
Conduction
Conduction bands
Degradation
Doping
Dyes
Electromagnetic absorption
Electronic structure
Hydrogen evolution
Metals
Nickel
Photocatalysis
Pyrolysis
Recombination
Valence band
title Nickel formate induced high-level in situ Ni-doping of g-C3N4 for a tunable band structure and enhanced photocatalytic performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nickel%20formate%20induced%20high-level%20in%20situ%20Ni-doping%20of%20g-C3N4%20for%20a%20tunable%20band%20structure%20and%20enhanced%20photocatalytic%20performance&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Deng,%20Peiqin&rft.date=2019&rft.volume=7&rft.issue=39&rft.spage=22385&rft.epage=22397&rft.pages=22385-22397&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta04559g&rft_dat=%3Cproquest%3E2302913782%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2302913782&rft_id=info:pmid/&rfr_iscdi=true