Distributed Energy Efficient Resource Allocation for OFDMA Smallcell Networks

Smallcells have recently emerged as a potential approach for local area deployments that can satisfy high data rate requirements, reduce energy consumption and enhance network coverage. In this paper, we work on maximizing the weighted sum energy efficiency (WS-EE) for densely deployed smallcell net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Communications 2018/11/01, Vol.E101.B(11), pp.2362-2370
Hauptverfasser: ZHANG, Guodong, ZHANG, Shibing, BAO, Zhihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2370
container_issue 11
container_start_page 2362
container_title IEICE Transactions on Communications
container_volume E101.B
creator ZHANG, Guodong
ZHANG, Shibing
BAO, Zhihua
description Smallcells have recently emerged as a potential approach for local area deployments that can satisfy high data rate requirements, reduce energy consumption and enhance network coverage. In this paper, we work on maximizing the weighted sum energy efficiency (WS-EE) for densely deployed smallcell networks. Due to the combinatorial and the general fractional program nature of the resource allocation problem, WS-EE maximization is non-convex and the optimal joint resource blocks (RBs) and power allocation is NP-hard. To solve this complex problem, we propose to decompose the primal problem into two subproblems (referred as RBs allocation and power control) and solve the subproblems sequentially. For the RBs allocation subproblem given any feasible network power profile, the optimal solution can be solved by maximizing throughput locally. For the power control subproblem, we propose to solve it locally based on a new defined pricing factor. Then, a distributed power control algorithm with guaranteed convergence is designed to achieve a Karush-Kuhn-Tucker (KKT) point of the primal problem. Simulation results verify the performance improvement of our proposed resource allocation scheme in terms of WS-EE. Besides, the performance evaluation shows the tradeoff between the WS-EE and the sum rate of the smallcell networks.
doi_str_mv 10.1587/transcom.2017EBP3425
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2302583967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2302583967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-a035b8124cdb79e4e8ca89942b8da807833198bfecbb5b33fe156d33a6d817fb3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwBywisU7x2HHiLNsSHlJLEYW1ZTuTkpImYLtC_D1FpaWrmcU9d0aHkEugAxAyuw5Ot952qwGjkBWjJ54wcUR6kCUiBp6IY9KjOaSxFJCekjPvl5SCZMB6ZHpT--Bqsw5YRkWLbvEdFVVV2xrbED2j79bOYjRsms7qUHdtVHUumt3eTIfRfKWbxmLTRI8Yvjr37s_JSaUbjxd_s09eb4uX8X08md09jIeT2CYsC7GmXBgJLLGlyXJMUFot8zxhRpZa0kxyDrk0FVpjhOG8QhBpyblOSwlZZXifXG17P1z3uUYf1HLzZ7s5qRinTEiep9kmlWxT1nXeO6zUh6tX2n0roOpXnNqJUwfiNth8iy190AvcQ9qF2jb4DxVAQY0UwG47aNmn7Zt2Clv-A5sYgNY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302583967</pqid></control><display><type>article</type><title>Distributed Energy Efficient Resource Allocation for OFDMA Smallcell Networks</title><source>Alma/SFX Local Collection</source><creator>ZHANG, Guodong ; ZHANG, Shibing ; BAO, Zhihua</creator><creatorcontrib>ZHANG, Guodong ; ZHANG, Shibing ; BAO, Zhihua</creatorcontrib><description>Smallcells have recently emerged as a potential approach for local area deployments that can satisfy high data rate requirements, reduce energy consumption and enhance network coverage. In this paper, we work on maximizing the weighted sum energy efficiency (WS-EE) for densely deployed smallcell networks. Due to the combinatorial and the general fractional program nature of the resource allocation problem, WS-EE maximization is non-convex and the optimal joint resource blocks (RBs) and power allocation is NP-hard. To solve this complex problem, we propose to decompose the primal problem into two subproblems (referred as RBs allocation and power control) and solve the subproblems sequentially. For the RBs allocation subproblem given any feasible network power profile, the optimal solution can be solved by maximizing throughput locally. For the power control subproblem, we propose to solve it locally based on a new defined pricing factor. Then, a distributed power control algorithm with guaranteed convergence is designed to achieve a Karush-Kuhn-Tucker (KKT) point of the primal problem. Simulation results verify the performance improvement of our proposed resource allocation scheme in terms of WS-EE. Besides, the performance evaluation shows the tradeoff between the WS-EE and the sum rate of the smallcell networks.</description><identifier>ISSN: 0916-8516</identifier><identifier>EISSN: 1745-1345</identifier><identifier>DOI: 10.1587/transcom.2017EBP3425</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Algorithms ; Combinatorial analysis ; Computer simulation ; Control algorithms ; Control theory ; Distributed generation ; Electric power distribution ; Energy consumption ; Energy conversion efficiency ; Mathematical programming ; Maximization ; Networks ; Optimization ; Performance evaluation ; Power control ; Power management ; pricing ; RBs allocation ; Resource allocation ; smallcells ; WS-EE</subject><ispartof>IEICE Transactions on Communications, 2018/11/01, Vol.E101.B(11), pp.2362-2370</ispartof><rights>2018 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c427t-a035b8124cdb79e4e8ca89942b8da807833198bfecbb5b33fe156d33a6d817fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>ZHANG, Guodong</creatorcontrib><creatorcontrib>ZHANG, Shibing</creatorcontrib><creatorcontrib>BAO, Zhihua</creatorcontrib><title>Distributed Energy Efficient Resource Allocation for OFDMA Smallcell Networks</title><title>IEICE Transactions on Communications</title><addtitle>IEICE Trans. Commun.</addtitle><description>Smallcells have recently emerged as a potential approach for local area deployments that can satisfy high data rate requirements, reduce energy consumption and enhance network coverage. In this paper, we work on maximizing the weighted sum energy efficiency (WS-EE) for densely deployed smallcell networks. Due to the combinatorial and the general fractional program nature of the resource allocation problem, WS-EE maximization is non-convex and the optimal joint resource blocks (RBs) and power allocation is NP-hard. To solve this complex problem, we propose to decompose the primal problem into two subproblems (referred as RBs allocation and power control) and solve the subproblems sequentially. For the RBs allocation subproblem given any feasible network power profile, the optimal solution can be solved by maximizing throughput locally. For the power control subproblem, we propose to solve it locally based on a new defined pricing factor. Then, a distributed power control algorithm with guaranteed convergence is designed to achieve a Karush-Kuhn-Tucker (KKT) point of the primal problem. Simulation results verify the performance improvement of our proposed resource allocation scheme in terms of WS-EE. Besides, the performance evaluation shows the tradeoff between the WS-EE and the sum rate of the smallcell networks.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Distributed generation</subject><subject>Electric power distribution</subject><subject>Energy consumption</subject><subject>Energy conversion efficiency</subject><subject>Mathematical programming</subject><subject>Maximization</subject><subject>Networks</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Power control</subject><subject>Power management</subject><subject>pricing</subject><subject>RBs allocation</subject><subject>Resource allocation</subject><subject>smallcells</subject><subject>WS-EE</subject><issn>0916-8516</issn><issn>1745-1345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqXwBywisU7x2HHiLNsSHlJLEYW1ZTuTkpImYLtC_D1FpaWrmcU9d0aHkEugAxAyuw5Ot952qwGjkBWjJ54wcUR6kCUiBp6IY9KjOaSxFJCekjPvl5SCZMB6ZHpT--Bqsw5YRkWLbvEdFVVV2xrbED2j79bOYjRsms7qUHdtVHUumt3eTIfRfKWbxmLTRI8Yvjr37s_JSaUbjxd_s09eb4uX8X08md09jIeT2CYsC7GmXBgJLLGlyXJMUFot8zxhRpZa0kxyDrk0FVpjhOG8QhBpyblOSwlZZXifXG17P1z3uUYf1HLzZ7s5qRinTEiep9kmlWxT1nXeO6zUh6tX2n0roOpXnNqJUwfiNth8iy190AvcQ9qF2jb4DxVAQY0UwG47aNmn7Zt2Clv-A5sYgNY</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>ZHANG, Guodong</creator><creator>ZHANG, Shibing</creator><creator>BAO, Zhihua</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20181101</creationdate><title>Distributed Energy Efficient Resource Allocation for OFDMA Smallcell Networks</title><author>ZHANG, Guodong ; ZHANG, Shibing ; BAO, Zhihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-a035b8124cdb79e4e8ca89942b8da807833198bfecbb5b33fe156d33a6d817fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Distributed generation</topic><topic>Electric power distribution</topic><topic>Energy consumption</topic><topic>Energy conversion efficiency</topic><topic>Mathematical programming</topic><topic>Maximization</topic><topic>Networks</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Power control</topic><topic>Power management</topic><topic>pricing</topic><topic>RBs allocation</topic><topic>Resource allocation</topic><topic>smallcells</topic><topic>WS-EE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, Guodong</creatorcontrib><creatorcontrib>ZHANG, Shibing</creatorcontrib><creatorcontrib>BAO, Zhihua</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEICE Transactions on Communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANG, Guodong</au><au>ZHANG, Shibing</au><au>BAO, Zhihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Energy Efficient Resource Allocation for OFDMA Smallcell Networks</atitle><jtitle>IEICE Transactions on Communications</jtitle><addtitle>IEICE Trans. Commun.</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>E101.B</volume><issue>11</issue><spage>2362</spage><epage>2370</epage><pages>2362-2370</pages><issn>0916-8516</issn><eissn>1745-1345</eissn><abstract>Smallcells have recently emerged as a potential approach for local area deployments that can satisfy high data rate requirements, reduce energy consumption and enhance network coverage. In this paper, we work on maximizing the weighted sum energy efficiency (WS-EE) for densely deployed smallcell networks. Due to the combinatorial and the general fractional program nature of the resource allocation problem, WS-EE maximization is non-convex and the optimal joint resource blocks (RBs) and power allocation is NP-hard. To solve this complex problem, we propose to decompose the primal problem into two subproblems (referred as RBs allocation and power control) and solve the subproblems sequentially. For the RBs allocation subproblem given any feasible network power profile, the optimal solution can be solved by maximizing throughput locally. For the power control subproblem, we propose to solve it locally based on a new defined pricing factor. Then, a distributed power control algorithm with guaranteed convergence is designed to achieve a Karush-Kuhn-Tucker (KKT) point of the primal problem. Simulation results verify the performance improvement of our proposed resource allocation scheme in terms of WS-EE. Besides, the performance evaluation shows the tradeoff between the WS-EE and the sum rate of the smallcell networks.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transcom.2017EBP3425</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0916-8516
ispartof IEICE Transactions on Communications, 2018/11/01, Vol.E101.B(11), pp.2362-2370
issn 0916-8516
1745-1345
language eng
recordid cdi_proquest_journals_2302583967
source Alma/SFX Local Collection
subjects Algorithms
Combinatorial analysis
Computer simulation
Control algorithms
Control theory
Distributed generation
Electric power distribution
Energy consumption
Energy conversion efficiency
Mathematical programming
Maximization
Networks
Optimization
Performance evaluation
Power control
Power management
pricing
RBs allocation
Resource allocation
smallcells
WS-EE
title Distributed Energy Efficient Resource Allocation for OFDMA Smallcell Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Energy%20Efficient%20Resource%20Allocation%20for%20OFDMA%20Smallcell%20Networks&rft.jtitle=IEICE%20Transactions%20on%20Communications&rft.au=ZHANG,%20Guodong&rft.date=2018-11-01&rft.volume=E101.B&rft.issue=11&rft.spage=2362&rft.epage=2370&rft.pages=2362-2370&rft.issn=0916-8516&rft.eissn=1745-1345&rft_id=info:doi/10.1587/transcom.2017EBP3425&rft_dat=%3Cproquest_cross%3E2302583967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2302583967&rft_id=info:pmid/&rfr_iscdi=true