Distributed Energy Efficient Resource Allocation for OFDMA Smallcell Networks
Smallcells have recently emerged as a potential approach for local area deployments that can satisfy high data rate requirements, reduce energy consumption and enhance network coverage. In this paper, we work on maximizing the weighted sum energy efficiency (WS-EE) for densely deployed smallcell net...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Communications 2018/11/01, Vol.E101.B(11), pp.2362-2370 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2370 |
---|---|
container_issue | 11 |
container_start_page | 2362 |
container_title | IEICE Transactions on Communications |
container_volume | E101.B |
creator | ZHANG, Guodong ZHANG, Shibing BAO, Zhihua |
description | Smallcells have recently emerged as a potential approach for local area deployments that can satisfy high data rate requirements, reduce energy consumption and enhance network coverage. In this paper, we work on maximizing the weighted sum energy efficiency (WS-EE) for densely deployed smallcell networks. Due to the combinatorial and the general fractional program nature of the resource allocation problem, WS-EE maximization is non-convex and the optimal joint resource blocks (RBs) and power allocation is NP-hard. To solve this complex problem, we propose to decompose the primal problem into two subproblems (referred as RBs allocation and power control) and solve the subproblems sequentially. For the RBs allocation subproblem given any feasible network power profile, the optimal solution can be solved by maximizing throughput locally. For the power control subproblem, we propose to solve it locally based on a new defined pricing factor. Then, a distributed power control algorithm with guaranteed convergence is designed to achieve a Karush-Kuhn-Tucker (KKT) point of the primal problem. Simulation results verify the performance improvement of our proposed resource allocation scheme in terms of WS-EE. Besides, the performance evaluation shows the tradeoff between the WS-EE and the sum rate of the smallcell networks. |
doi_str_mv | 10.1587/transcom.2017EBP3425 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2302583967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2302583967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-a035b8124cdb79e4e8ca89942b8da807833198bfecbb5b33fe156d33a6d817fb3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwBywisU7x2HHiLNsSHlJLEYW1ZTuTkpImYLtC_D1FpaWrmcU9d0aHkEugAxAyuw5Ot952qwGjkBWjJ54wcUR6kCUiBp6IY9KjOaSxFJCekjPvl5SCZMB6ZHpT--Bqsw5YRkWLbvEdFVVV2xrbED2j79bOYjRsms7qUHdtVHUumt3eTIfRfKWbxmLTRI8Yvjr37s_JSaUbjxd_s09eb4uX8X08md09jIeT2CYsC7GmXBgJLLGlyXJMUFot8zxhRpZa0kxyDrk0FVpjhOG8QhBpyblOSwlZZXifXG17P1z3uUYf1HLzZ7s5qRinTEiep9kmlWxT1nXeO6zUh6tX2n0roOpXnNqJUwfiNth8iy190AvcQ9qF2jb4DxVAQY0UwG47aNmn7Zt2Clv-A5sYgNY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302583967</pqid></control><display><type>article</type><title>Distributed Energy Efficient Resource Allocation for OFDMA Smallcell Networks</title><source>Alma/SFX Local Collection</source><creator>ZHANG, Guodong ; ZHANG, Shibing ; BAO, Zhihua</creator><creatorcontrib>ZHANG, Guodong ; ZHANG, Shibing ; BAO, Zhihua</creatorcontrib><description>Smallcells have recently emerged as a potential approach for local area deployments that can satisfy high data rate requirements, reduce energy consumption and enhance network coverage. In this paper, we work on maximizing the weighted sum energy efficiency (WS-EE) for densely deployed smallcell networks. Due to the combinatorial and the general fractional program nature of the resource allocation problem, WS-EE maximization is non-convex and the optimal joint resource blocks (RBs) and power allocation is NP-hard. To solve this complex problem, we propose to decompose the primal problem into two subproblems (referred as RBs allocation and power control) and solve the subproblems sequentially. For the RBs allocation subproblem given any feasible network power profile, the optimal solution can be solved by maximizing throughput locally. For the power control subproblem, we propose to solve it locally based on a new defined pricing factor. Then, a distributed power control algorithm with guaranteed convergence is designed to achieve a Karush-Kuhn-Tucker (KKT) point of the primal problem. Simulation results verify the performance improvement of our proposed resource allocation scheme in terms of WS-EE. Besides, the performance evaluation shows the tradeoff between the WS-EE and the sum rate of the smallcell networks.</description><identifier>ISSN: 0916-8516</identifier><identifier>EISSN: 1745-1345</identifier><identifier>DOI: 10.1587/transcom.2017EBP3425</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Algorithms ; Combinatorial analysis ; Computer simulation ; Control algorithms ; Control theory ; Distributed generation ; Electric power distribution ; Energy consumption ; Energy conversion efficiency ; Mathematical programming ; Maximization ; Networks ; Optimization ; Performance evaluation ; Power control ; Power management ; pricing ; RBs allocation ; Resource allocation ; smallcells ; WS-EE</subject><ispartof>IEICE Transactions on Communications, 2018/11/01, Vol.E101.B(11), pp.2362-2370</ispartof><rights>2018 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c427t-a035b8124cdb79e4e8ca89942b8da807833198bfecbb5b33fe156d33a6d817fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>ZHANG, Guodong</creatorcontrib><creatorcontrib>ZHANG, Shibing</creatorcontrib><creatorcontrib>BAO, Zhihua</creatorcontrib><title>Distributed Energy Efficient Resource Allocation for OFDMA Smallcell Networks</title><title>IEICE Transactions on Communications</title><addtitle>IEICE Trans. Commun.</addtitle><description>Smallcells have recently emerged as a potential approach for local area deployments that can satisfy high data rate requirements, reduce energy consumption and enhance network coverage. In this paper, we work on maximizing the weighted sum energy efficiency (WS-EE) for densely deployed smallcell networks. Due to the combinatorial and the general fractional program nature of the resource allocation problem, WS-EE maximization is non-convex and the optimal joint resource blocks (RBs) and power allocation is NP-hard. To solve this complex problem, we propose to decompose the primal problem into two subproblems (referred as RBs allocation and power control) and solve the subproblems sequentially. For the RBs allocation subproblem given any feasible network power profile, the optimal solution can be solved by maximizing throughput locally. For the power control subproblem, we propose to solve it locally based on a new defined pricing factor. Then, a distributed power control algorithm with guaranteed convergence is designed to achieve a Karush-Kuhn-Tucker (KKT) point of the primal problem. Simulation results verify the performance improvement of our proposed resource allocation scheme in terms of WS-EE. Besides, the performance evaluation shows the tradeoff between the WS-EE and the sum rate of the smallcell networks.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Distributed generation</subject><subject>Electric power distribution</subject><subject>Energy consumption</subject><subject>Energy conversion efficiency</subject><subject>Mathematical programming</subject><subject>Maximization</subject><subject>Networks</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Power control</subject><subject>Power management</subject><subject>pricing</subject><subject>RBs allocation</subject><subject>Resource allocation</subject><subject>smallcells</subject><subject>WS-EE</subject><issn>0916-8516</issn><issn>1745-1345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqXwBywisU7x2HHiLNsSHlJLEYW1ZTuTkpImYLtC_D1FpaWrmcU9d0aHkEugAxAyuw5Ot952qwGjkBWjJ54wcUR6kCUiBp6IY9KjOaSxFJCekjPvl5SCZMB6ZHpT--Bqsw5YRkWLbvEdFVVV2xrbED2j79bOYjRsms7qUHdtVHUumt3eTIfRfKWbxmLTRI8Yvjr37s_JSaUbjxd_s09eb4uX8X08md09jIeT2CYsC7GmXBgJLLGlyXJMUFot8zxhRpZa0kxyDrk0FVpjhOG8QhBpyblOSwlZZXifXG17P1z3uUYf1HLzZ7s5qRinTEiep9kmlWxT1nXeO6zUh6tX2n0roOpXnNqJUwfiNth8iy190AvcQ9qF2jb4DxVAQY0UwG47aNmn7Zt2Clv-A5sYgNY</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>ZHANG, Guodong</creator><creator>ZHANG, Shibing</creator><creator>BAO, Zhihua</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20181101</creationdate><title>Distributed Energy Efficient Resource Allocation for OFDMA Smallcell Networks</title><author>ZHANG, Guodong ; ZHANG, Shibing ; BAO, Zhihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-a035b8124cdb79e4e8ca89942b8da807833198bfecbb5b33fe156d33a6d817fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Distributed generation</topic><topic>Electric power distribution</topic><topic>Energy consumption</topic><topic>Energy conversion efficiency</topic><topic>Mathematical programming</topic><topic>Maximization</topic><topic>Networks</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Power control</topic><topic>Power management</topic><topic>pricing</topic><topic>RBs allocation</topic><topic>Resource allocation</topic><topic>smallcells</topic><topic>WS-EE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, Guodong</creatorcontrib><creatorcontrib>ZHANG, Shibing</creatorcontrib><creatorcontrib>BAO, Zhihua</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEICE Transactions on Communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANG, Guodong</au><au>ZHANG, Shibing</au><au>BAO, Zhihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Energy Efficient Resource Allocation for OFDMA Smallcell Networks</atitle><jtitle>IEICE Transactions on Communications</jtitle><addtitle>IEICE Trans. Commun.</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>E101.B</volume><issue>11</issue><spage>2362</spage><epage>2370</epage><pages>2362-2370</pages><issn>0916-8516</issn><eissn>1745-1345</eissn><abstract>Smallcells have recently emerged as a potential approach for local area deployments that can satisfy high data rate requirements, reduce energy consumption and enhance network coverage. In this paper, we work on maximizing the weighted sum energy efficiency (WS-EE) for densely deployed smallcell networks. Due to the combinatorial and the general fractional program nature of the resource allocation problem, WS-EE maximization is non-convex and the optimal joint resource blocks (RBs) and power allocation is NP-hard. To solve this complex problem, we propose to decompose the primal problem into two subproblems (referred as RBs allocation and power control) and solve the subproblems sequentially. For the RBs allocation subproblem given any feasible network power profile, the optimal solution can be solved by maximizing throughput locally. For the power control subproblem, we propose to solve it locally based on a new defined pricing factor. Then, a distributed power control algorithm with guaranteed convergence is designed to achieve a Karush-Kuhn-Tucker (KKT) point of the primal problem. Simulation results verify the performance improvement of our proposed resource allocation scheme in terms of WS-EE. Besides, the performance evaluation shows the tradeoff between the WS-EE and the sum rate of the smallcell networks.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transcom.2017EBP3425</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8516 |
ispartof | IEICE Transactions on Communications, 2018/11/01, Vol.E101.B(11), pp.2362-2370 |
issn | 0916-8516 1745-1345 |
language | eng |
recordid | cdi_proquest_journals_2302583967 |
source | Alma/SFX Local Collection |
subjects | Algorithms Combinatorial analysis Computer simulation Control algorithms Control theory Distributed generation Electric power distribution Energy consumption Energy conversion efficiency Mathematical programming Maximization Networks Optimization Performance evaluation Power control Power management pricing RBs allocation Resource allocation smallcells WS-EE |
title | Distributed Energy Efficient Resource Allocation for OFDMA Smallcell Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Energy%20Efficient%20Resource%20Allocation%20for%20OFDMA%20Smallcell%20Networks&rft.jtitle=IEICE%20Transactions%20on%20Communications&rft.au=ZHANG,%20Guodong&rft.date=2018-11-01&rft.volume=E101.B&rft.issue=11&rft.spage=2362&rft.epage=2370&rft.pages=2362-2370&rft.issn=0916-8516&rft.eissn=1745-1345&rft_id=info:doi/10.1587/transcom.2017EBP3425&rft_dat=%3Cproquest_cross%3E2302583967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2302583967&rft_id=info:pmid/&rfr_iscdi=true |