Measurement and Correlation of Diffusion Coefficients in Supercritical Fluids
Diffusion coefficients in supercritical fluids are of considerable importance in the design, optimization, scale-up and simulation of the newly proposed supercritical fluid processes. Here, the methods of measuring diffusion coefficients in supercritical fluids have been discussed. Various diffusion...
Gespeichert in:
Veröffentlicht in: | The Review of High Pressure Science and Technology 2019, Vol.29(3), pp.172-180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 3 |
container_start_page | 172 |
container_title | The Review of High Pressure Science and Technology |
container_volume | 29 |
creator | KONG, Chang Yi FUNAZUKURI, Toshitaka MIYAKE, Koji |
description | Diffusion coefficients in supercritical fluids are of considerable importance in the design, optimization, scale-up and simulation of the newly proposed supercritical fluid processes. Here, the methods of measuring diffusion coefficients in supercritical fluids have been discussed. Various diffusion correlations have been presented as well. The reported diffusion data in supercritical carbon dioxide were mostly measured by the Taylor dispersion and the chromatographic impulse response (CIR) methods. It is found that most of the large and polar compounds have been studied by the CIR method. |
doi_str_mv | 10.4131/jshpreview.29.172 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2302482860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2302482860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2442-8a6bdff4a1760186c1d9683d141484b2bea7cd273e72b3c1a520acfffd6a20113</originalsourceid><addsrcrecordid>eNpdkFFLwzAQx4MoOOY-gG8FnztzSZamj7I5FTZ8UMG3kKYXl9G1NWkVv70dGxN8Oo77_-64HyHXQKcCONxu46YN-OXxe8ryKWTsjIyAC5VCLug5GdEcslTy_P2STGL0BWUcZKbYbETWazSxD7jDuktMXSbzJgSsTOebOmlcsvDO9XHfzBt0zls_BGPi6-SlbzHY4DtvTZUsq96X8YpcOFNFnBzrmLwt71_nj-nq-eFpfrdKLROCpcrIonROGMgkBSUtlLlUvAQBQomCFWgyW7KMY8YKbsHMGDXWOVdKwygAH5Obw942NJ89xk5vmz7Uw0nNOGVCMSXpkIJDyoYmxoBOt8HvTPjRQPVenP4Tp1muB3EDszgw29iZDzwRJgx_VviP4EfsNLYbEzTW_Bdd_X4i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302482860</pqid></control><display><type>article</type><title>Measurement and Correlation of Diffusion Coefficients in Supercritical Fluids</title><source>Alma/SFX Local Collection</source><creator>KONG, Chang Yi ; FUNAZUKURI, Toshitaka ; MIYAKE, Koji</creator><creatorcontrib>KONG, Chang Yi ; FUNAZUKURI, Toshitaka ; MIYAKE, Koji</creatorcontrib><description>Diffusion coefficients in supercritical fluids are of considerable importance in the design, optimization, scale-up and simulation of the newly proposed supercritical fluid processes. Here, the methods of measuring diffusion coefficients in supercritical fluids have been discussed. Various diffusion correlations have been presented as well. The reported diffusion data in supercritical carbon dioxide were mostly measured by the Taylor dispersion and the chromatographic impulse response (CIR) methods. It is found that most of the large and polar compounds have been studied by the CIR method.</description><identifier>ISSN: 0917-639X</identifier><identifier>EISSN: 1348-1940</identifier><identifier>DOI: 10.4131/jshpreview.29.172</identifier><language>eng ; jpn</language><publisher>Tokyo: The Japan Society of High Pressure Science and Technology</publisher><subject>Carbon dioxide ; chromatographic impulse response ; Coefficients ; correlation ; Correlation analysis ; Design optimization ; Diffusion ; diffusion coefficient ; Impulse response ; measurement ; Measurement methods ; Solvents ; supercritical ; Supercritical fluids ; Taylor dispersion</subject><ispartof>The Review of High Pressure Science and Technology, 2019, Vol.29(3), pp.172-180</ispartof><rights>2019 The Japan Society of High Pressure Science and Technology</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4014,27914,27915,27916</link.rule.ids></links><search><creatorcontrib>KONG, Chang Yi</creatorcontrib><creatorcontrib>FUNAZUKURI, Toshitaka</creatorcontrib><creatorcontrib>MIYAKE, Koji</creatorcontrib><title>Measurement and Correlation of Diffusion Coefficients in Supercritical Fluids</title><title>The Review of High Pressure Science and Technology</title><description>Diffusion coefficients in supercritical fluids are of considerable importance in the design, optimization, scale-up and simulation of the newly proposed supercritical fluid processes. Here, the methods of measuring diffusion coefficients in supercritical fluids have been discussed. Various diffusion correlations have been presented as well. The reported diffusion data in supercritical carbon dioxide were mostly measured by the Taylor dispersion and the chromatographic impulse response (CIR) methods. It is found that most of the large and polar compounds have been studied by the CIR method.</description><subject>Carbon dioxide</subject><subject>chromatographic impulse response</subject><subject>Coefficients</subject><subject>correlation</subject><subject>Correlation analysis</subject><subject>Design optimization</subject><subject>Diffusion</subject><subject>diffusion coefficient</subject><subject>Impulse response</subject><subject>measurement</subject><subject>Measurement methods</subject><subject>Solvents</subject><subject>supercritical</subject><subject>Supercritical fluids</subject><subject>Taylor dispersion</subject><issn>0917-639X</issn><issn>1348-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkFFLwzAQx4MoOOY-gG8FnztzSZamj7I5FTZ8UMG3kKYXl9G1NWkVv70dGxN8Oo77_-64HyHXQKcCONxu46YN-OXxe8ryKWTsjIyAC5VCLug5GdEcslTy_P2STGL0BWUcZKbYbETWazSxD7jDuktMXSbzJgSsTOebOmlcsvDO9XHfzBt0zls_BGPi6-SlbzHY4DtvTZUsq96X8YpcOFNFnBzrmLwt71_nj-nq-eFpfrdKLROCpcrIonROGMgkBSUtlLlUvAQBQomCFWgyW7KMY8YKbsHMGDXWOVdKwygAH5Obw942NJ89xk5vmz7Uw0nNOGVCMSXpkIJDyoYmxoBOt8HvTPjRQPVenP4Tp1muB3EDszgw29iZDzwRJgx_VviP4EfsNLYbEzTW_Bdd_X4i</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>KONG, Chang Yi</creator><creator>FUNAZUKURI, Toshitaka</creator><creator>MIYAKE, Koji</creator><general>The Japan Society of High Pressure Science and Technology</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2019</creationdate><title>Measurement and Correlation of Diffusion Coefficients in Supercritical Fluids</title><author>KONG, Chang Yi ; FUNAZUKURI, Toshitaka ; MIYAKE, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2442-8a6bdff4a1760186c1d9683d141484b2bea7cd273e72b3c1a520acfffd6a20113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2019</creationdate><topic>Carbon dioxide</topic><topic>chromatographic impulse response</topic><topic>Coefficients</topic><topic>correlation</topic><topic>Correlation analysis</topic><topic>Design optimization</topic><topic>Diffusion</topic><topic>diffusion coefficient</topic><topic>Impulse response</topic><topic>measurement</topic><topic>Measurement methods</topic><topic>Solvents</topic><topic>supercritical</topic><topic>Supercritical fluids</topic><topic>Taylor dispersion</topic><toplevel>online_resources</toplevel><creatorcontrib>KONG, Chang Yi</creatorcontrib><creatorcontrib>FUNAZUKURI, Toshitaka</creatorcontrib><creatorcontrib>MIYAKE, Koji</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Review of High Pressure Science and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KONG, Chang Yi</au><au>FUNAZUKURI, Toshitaka</au><au>MIYAKE, Koji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement and Correlation of Diffusion Coefficients in Supercritical Fluids</atitle><jtitle>The Review of High Pressure Science and Technology</jtitle><date>2019</date><risdate>2019</risdate><volume>29</volume><issue>3</issue><spage>172</spage><epage>180</epage><pages>172-180</pages><issn>0917-639X</issn><eissn>1348-1940</eissn><abstract>Diffusion coefficients in supercritical fluids are of considerable importance in the design, optimization, scale-up and simulation of the newly proposed supercritical fluid processes. Here, the methods of measuring diffusion coefficients in supercritical fluids have been discussed. Various diffusion correlations have been presented as well. The reported diffusion data in supercritical carbon dioxide were mostly measured by the Taylor dispersion and the chromatographic impulse response (CIR) methods. It is found that most of the large and polar compounds have been studied by the CIR method.</abstract><cop>Tokyo</cop><pub>The Japan Society of High Pressure Science and Technology</pub><doi>10.4131/jshpreview.29.172</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0917-639X |
ispartof | The Review of High Pressure Science and Technology, 2019, Vol.29(3), pp.172-180 |
issn | 0917-639X 1348-1940 |
language | eng ; jpn |
recordid | cdi_proquest_journals_2302482860 |
source | Alma/SFX Local Collection |
subjects | Carbon dioxide chromatographic impulse response Coefficients correlation Correlation analysis Design optimization Diffusion diffusion coefficient Impulse response measurement Measurement methods Solvents supercritical Supercritical fluids Taylor dispersion |
title | Measurement and Correlation of Diffusion Coefficients in Supercritical Fluids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20and%20Correlation%20of%20Diffusion%20Coefficients%20in%20Supercritical%20Fluids&rft.jtitle=The%20Review%20of%20High%20Pressure%20Science%20and%20Technology&rft.au=KONG,%20Chang%20Yi&rft.date=2019&rft.volume=29&rft.issue=3&rft.spage=172&rft.epage=180&rft.pages=172-180&rft.issn=0917-639X&rft.eissn=1348-1940&rft_id=info:doi/10.4131/jshpreview.29.172&rft_dat=%3Cproquest_cross%3E2302482860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2302482860&rft_id=info:pmid/&rfr_iscdi=true |