Measurement and Correlation of Diffusion Coefficients in Supercritical Fluids

Diffusion coefficients in supercritical fluids are of considerable importance in the design, optimization, scale-up and simulation of the newly proposed supercritical fluid processes. Here, the methods of measuring diffusion coefficients in supercritical fluids have been discussed. Various diffusion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Review of High Pressure Science and Technology 2019, Vol.29(3), pp.172-180
Hauptverfasser: KONG, Chang Yi, FUNAZUKURI, Toshitaka, MIYAKE, Koji
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 3
container_start_page 172
container_title The Review of High Pressure Science and Technology
container_volume 29
creator KONG, Chang Yi
FUNAZUKURI, Toshitaka
MIYAKE, Koji
description Diffusion coefficients in supercritical fluids are of considerable importance in the design, optimization, scale-up and simulation of the newly proposed supercritical fluid processes. Here, the methods of measuring diffusion coefficients in supercritical fluids have been discussed. Various diffusion correlations have been presented as well. The reported diffusion data in supercritical carbon dioxide were mostly measured by the Taylor dispersion and the chromatographic impulse response (CIR) methods. It is found that most of the large and polar compounds have been studied by the CIR method.
doi_str_mv 10.4131/jshpreview.29.172
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2302482860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2302482860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2442-8a6bdff4a1760186c1d9683d141484b2bea7cd273e72b3c1a520acfffd6a20113</originalsourceid><addsrcrecordid>eNpdkFFLwzAQx4MoOOY-gG8FnztzSZamj7I5FTZ8UMG3kKYXl9G1NWkVv70dGxN8Oo77_-64HyHXQKcCONxu46YN-OXxe8ryKWTsjIyAC5VCLug5GdEcslTy_P2STGL0BWUcZKbYbETWazSxD7jDuktMXSbzJgSsTOebOmlcsvDO9XHfzBt0zls_BGPi6-SlbzHY4DtvTZUsq96X8YpcOFNFnBzrmLwt71_nj-nq-eFpfrdKLROCpcrIonROGMgkBSUtlLlUvAQBQomCFWgyW7KMY8YKbsHMGDXWOVdKwygAH5Obw942NJ89xk5vmz7Uw0nNOGVCMSXpkIJDyoYmxoBOt8HvTPjRQPVenP4Tp1muB3EDszgw29iZDzwRJgx_VviP4EfsNLYbEzTW_Bdd_X4i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302482860</pqid></control><display><type>article</type><title>Measurement and Correlation of Diffusion Coefficients in Supercritical Fluids</title><source>Alma/SFX Local Collection</source><creator>KONG, Chang Yi ; FUNAZUKURI, Toshitaka ; MIYAKE, Koji</creator><creatorcontrib>KONG, Chang Yi ; FUNAZUKURI, Toshitaka ; MIYAKE, Koji</creatorcontrib><description>Diffusion coefficients in supercritical fluids are of considerable importance in the design, optimization, scale-up and simulation of the newly proposed supercritical fluid processes. Here, the methods of measuring diffusion coefficients in supercritical fluids have been discussed. Various diffusion correlations have been presented as well. The reported diffusion data in supercritical carbon dioxide were mostly measured by the Taylor dispersion and the chromatographic impulse response (CIR) methods. It is found that most of the large and polar compounds have been studied by the CIR method.</description><identifier>ISSN: 0917-639X</identifier><identifier>EISSN: 1348-1940</identifier><identifier>DOI: 10.4131/jshpreview.29.172</identifier><language>eng ; jpn</language><publisher>Tokyo: The Japan Society of High Pressure Science and Technology</publisher><subject>Carbon dioxide ; chromatographic impulse response ; Coefficients ; correlation ; Correlation analysis ; Design optimization ; Diffusion ; diffusion coefficient ; Impulse response ; measurement ; Measurement methods ; Solvents ; supercritical ; Supercritical fluids ; Taylor dispersion</subject><ispartof>The Review of High Pressure Science and Technology, 2019, Vol.29(3), pp.172-180</ispartof><rights>2019 The Japan Society of High Pressure Science and Technology</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4014,27914,27915,27916</link.rule.ids></links><search><creatorcontrib>KONG, Chang Yi</creatorcontrib><creatorcontrib>FUNAZUKURI, Toshitaka</creatorcontrib><creatorcontrib>MIYAKE, Koji</creatorcontrib><title>Measurement and Correlation of Diffusion Coefficients in Supercritical Fluids</title><title>The Review of High Pressure Science and Technology</title><description>Diffusion coefficients in supercritical fluids are of considerable importance in the design, optimization, scale-up and simulation of the newly proposed supercritical fluid processes. Here, the methods of measuring diffusion coefficients in supercritical fluids have been discussed. Various diffusion correlations have been presented as well. The reported diffusion data in supercritical carbon dioxide were mostly measured by the Taylor dispersion and the chromatographic impulse response (CIR) methods. It is found that most of the large and polar compounds have been studied by the CIR method.</description><subject>Carbon dioxide</subject><subject>chromatographic impulse response</subject><subject>Coefficients</subject><subject>correlation</subject><subject>Correlation analysis</subject><subject>Design optimization</subject><subject>Diffusion</subject><subject>diffusion coefficient</subject><subject>Impulse response</subject><subject>measurement</subject><subject>Measurement methods</subject><subject>Solvents</subject><subject>supercritical</subject><subject>Supercritical fluids</subject><subject>Taylor dispersion</subject><issn>0917-639X</issn><issn>1348-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkFFLwzAQx4MoOOY-gG8FnztzSZamj7I5FTZ8UMG3kKYXl9G1NWkVv70dGxN8Oo77_-64HyHXQKcCONxu46YN-OXxe8ryKWTsjIyAC5VCLug5GdEcslTy_P2STGL0BWUcZKbYbETWazSxD7jDuktMXSbzJgSsTOebOmlcsvDO9XHfzBt0zls_BGPi6-SlbzHY4DtvTZUsq96X8YpcOFNFnBzrmLwt71_nj-nq-eFpfrdKLROCpcrIonROGMgkBSUtlLlUvAQBQomCFWgyW7KMY8YKbsHMGDXWOVdKwygAH5Obw942NJ89xk5vmz7Uw0nNOGVCMSXpkIJDyoYmxoBOt8HvTPjRQPVenP4Tp1muB3EDszgw29iZDzwRJgx_VviP4EfsNLYbEzTW_Bdd_X4i</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>KONG, Chang Yi</creator><creator>FUNAZUKURI, Toshitaka</creator><creator>MIYAKE, Koji</creator><general>The Japan Society of High Pressure Science and Technology</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2019</creationdate><title>Measurement and Correlation of Diffusion Coefficients in Supercritical Fluids</title><author>KONG, Chang Yi ; FUNAZUKURI, Toshitaka ; MIYAKE, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2442-8a6bdff4a1760186c1d9683d141484b2bea7cd273e72b3c1a520acfffd6a20113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2019</creationdate><topic>Carbon dioxide</topic><topic>chromatographic impulse response</topic><topic>Coefficients</topic><topic>correlation</topic><topic>Correlation analysis</topic><topic>Design optimization</topic><topic>Diffusion</topic><topic>diffusion coefficient</topic><topic>Impulse response</topic><topic>measurement</topic><topic>Measurement methods</topic><topic>Solvents</topic><topic>supercritical</topic><topic>Supercritical fluids</topic><topic>Taylor dispersion</topic><toplevel>online_resources</toplevel><creatorcontrib>KONG, Chang Yi</creatorcontrib><creatorcontrib>FUNAZUKURI, Toshitaka</creatorcontrib><creatorcontrib>MIYAKE, Koji</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Review of High Pressure Science and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KONG, Chang Yi</au><au>FUNAZUKURI, Toshitaka</au><au>MIYAKE, Koji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement and Correlation of Diffusion Coefficients in Supercritical Fluids</atitle><jtitle>The Review of High Pressure Science and Technology</jtitle><date>2019</date><risdate>2019</risdate><volume>29</volume><issue>3</issue><spage>172</spage><epage>180</epage><pages>172-180</pages><issn>0917-639X</issn><eissn>1348-1940</eissn><abstract>Diffusion coefficients in supercritical fluids are of considerable importance in the design, optimization, scale-up and simulation of the newly proposed supercritical fluid processes. Here, the methods of measuring diffusion coefficients in supercritical fluids have been discussed. Various diffusion correlations have been presented as well. The reported diffusion data in supercritical carbon dioxide were mostly measured by the Taylor dispersion and the chromatographic impulse response (CIR) methods. It is found that most of the large and polar compounds have been studied by the CIR method.</abstract><cop>Tokyo</cop><pub>The Japan Society of High Pressure Science and Technology</pub><doi>10.4131/jshpreview.29.172</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0917-639X
ispartof The Review of High Pressure Science and Technology, 2019, Vol.29(3), pp.172-180
issn 0917-639X
1348-1940
language eng ; jpn
recordid cdi_proquest_journals_2302482860
source Alma/SFX Local Collection
subjects Carbon dioxide
chromatographic impulse response
Coefficients
correlation
Correlation analysis
Design optimization
Diffusion
diffusion coefficient
Impulse response
measurement
Measurement methods
Solvents
supercritical
Supercritical fluids
Taylor dispersion
title Measurement and Correlation of Diffusion Coefficients in Supercritical Fluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20and%20Correlation%20of%20Diffusion%20Coefficients%20in%20Supercritical%20Fluids&rft.jtitle=The%20Review%20of%20High%20Pressure%20Science%20and%20Technology&rft.au=KONG,%20Chang%20Yi&rft.date=2019&rft.volume=29&rft.issue=3&rft.spage=172&rft.epage=180&rft.pages=172-180&rft.issn=0917-639X&rft.eissn=1348-1940&rft_id=info:doi/10.4131/jshpreview.29.172&rft_dat=%3Cproquest_cross%3E2302482860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2302482860&rft_id=info:pmid/&rfr_iscdi=true