W-Y2O3 composite nanopowders prepared by freeze-drying method and its sintering characteristics
In order to prepare high performance oxide-dispersion-strengthened tungsten based alloys, the W-Y2O3 composite powder precursors were synthesized by novel freeze-drying method. The average W grain size of prepared W-Y2O3 composite powder is 14.2 nm, and corresponding grain size distribution is extre...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2019-10, Vol.806, p.127-135 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 135 |
---|---|
container_issue | |
container_start_page | 127 |
container_title | Journal of alloys and compounds |
container_volume | 806 |
creator | Hu, Weiqiang Yu, Liming Ma, Zongqing Liu, Yongchang |
description | In order to prepare high performance oxide-dispersion-strengthened tungsten based alloys, the W-Y2O3 composite powder precursors were synthesized by novel freeze-drying method. The average W grain size of prepared W-Y2O3 composite powder is 14.2 nm, and corresponding grain size distribution is extremely narrow. The low-temperature sintered W-Y2O3 alloys possess an ultrafine W grain size of about 410 nm while maintaining a comparatively high sintering density of 98.1%. The Y2O3 particles (20–50 nm) with a W-Y-O diffusion layer and Y2WO6 particles ( |
doi_str_mv | 10.1016/j.jallcom.2019.07.214 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2302421777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092583881932729X</els_id><sourcerecordid>2302421777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-bbea653684902f2a6e6b12558ad4cdab6a2efb2a881db027583ab6c39a501def3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCHguTUfbZOeRBa_YGEvingKaTJ1U3abmmSV9dfbsnv3NMzM-77DPAhdU5JTQqvbLu_0ZmP8NmeE1jkROaPFCZpRKXhWVFV9imakZmUmuZTn6CLGjpBRyekMqffsg604Ht2Djy4B7nXvB_9jIUQ8BBh0AIubPW4DwC9kNuxd_4m3kNbeYt1b7FLE0fUJwrQwax20mZqYnImX6KzVmwhXxzpHb48Pr4vnbLl6elncLzPDuUhZ04CuSl7JoiasZbqCqqGsLKW2hbG6qTSDtmFaSmobwkQp-Tg0vNYloRZaPkc3h9wh-K8dxKQ6vwv9eFIxTljBqBBiVJUHlQk-xgCtGoLb6rBXlKiJperUkaWaWCoi1Mhy9N0dfDC-8O0gqGgc9AasC2CSst79k_AHE6GBfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302421777</pqid></control><display><type>article</type><title>W-Y2O3 composite nanopowders prepared by freeze-drying method and its sintering characteristics</title><source>Elsevier ScienceDirect Journals</source><creator>Hu, Weiqiang ; Yu, Liming ; Ma, Zongqing ; Liu, Yongchang</creator><creatorcontrib>Hu, Weiqiang ; Yu, Liming ; Ma, Zongqing ; Liu, Yongchang</creatorcontrib><description>In order to prepare high performance oxide-dispersion-strengthened tungsten based alloys, the W-Y2O3 composite powder precursors were synthesized by novel freeze-drying method. The average W grain size of prepared W-Y2O3 composite powder is 14.2 nm, and corresponding grain size distribution is extremely narrow. The low-temperature sintered W-Y2O3 alloys possess an ultrafine W grain size of about 410 nm while maintaining a comparatively high sintering density of 98.1%. The Y2O3 particles (20–50 nm) with a W-Y-O diffusion layer and Y2WO6 particles (<20 nm) distribute uniformly within W grains and especially at W grain boundaries. These W-Y-O phases adsorb free oxygen impurity, resulting in the purification and strengthening of W matrix. What's more, coherent or semi-coherent interfaces are observed between Y2WO6 particles and W matrix, reinforcing the bonding strength of phase boundary. The combined action of the factors mentioned above leads to the hardness of sintered W-Y2O3 alloys in our work as high as 690.2 ± 32.0 HV0.2. These results indicate that the freeze-drying method and subsequent low temperature sintering is a promising method for preparing high performance W-Y2O3 alloys with ultrafine grains.
•The W-Y2O3 powders of 14.1 nm were prepared by novel freeze-drying method.•The low-temperature sintered W-Y2O3 alloys possess W grains of 400 nm meanwhile its density is 98.1%.•Nano oxide particles of 10∼30 nm uniformly distribute in W matrix.•Combining the interfacial relationship and the oxygen distribution, the mechanism of boundary purification and enhancement is proposed.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.07.214</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloy powders ; Bonding strength ; Diffusion layers ; Dispersion hardening alloys ; Freeze drying ; Grain boundaries ; Grain size ; Grain size distribution ; Low temperature sintering ; Particle size distribution ; Sintering ; Sintering (powder metallurgy) ; Tungsten base alloys ; Ultrafine grains ; Ultrafines ; W-Y2O3 ; Yttrium oxide</subject><ispartof>Journal of alloys and compounds, 2019-10, Vol.806, p.127-135</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-bbea653684902f2a6e6b12558ad4cdab6a2efb2a881db027583ab6c39a501def3</citedby><cites>FETCH-LOGICAL-c337t-bbea653684902f2a6e6b12558ad4cdab6a2efb2a881db027583ab6c39a501def3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.07.214$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Hu, Weiqiang</creatorcontrib><creatorcontrib>Yu, Liming</creatorcontrib><creatorcontrib>Ma, Zongqing</creatorcontrib><creatorcontrib>Liu, Yongchang</creatorcontrib><title>W-Y2O3 composite nanopowders prepared by freeze-drying method and its sintering characteristics</title><title>Journal of alloys and compounds</title><description>In order to prepare high performance oxide-dispersion-strengthened tungsten based alloys, the W-Y2O3 composite powder precursors were synthesized by novel freeze-drying method. The average W grain size of prepared W-Y2O3 composite powder is 14.2 nm, and corresponding grain size distribution is extremely narrow. The low-temperature sintered W-Y2O3 alloys possess an ultrafine W grain size of about 410 nm while maintaining a comparatively high sintering density of 98.1%. The Y2O3 particles (20–50 nm) with a W-Y-O diffusion layer and Y2WO6 particles (<20 nm) distribute uniformly within W grains and especially at W grain boundaries. These W-Y-O phases adsorb free oxygen impurity, resulting in the purification and strengthening of W matrix. What's more, coherent or semi-coherent interfaces are observed between Y2WO6 particles and W matrix, reinforcing the bonding strength of phase boundary. The combined action of the factors mentioned above leads to the hardness of sintered W-Y2O3 alloys in our work as high as 690.2 ± 32.0 HV0.2. These results indicate that the freeze-drying method and subsequent low temperature sintering is a promising method for preparing high performance W-Y2O3 alloys with ultrafine grains.
•The W-Y2O3 powders of 14.1 nm were prepared by novel freeze-drying method.•The low-temperature sintered W-Y2O3 alloys possess W grains of 400 nm meanwhile its density is 98.1%.•Nano oxide particles of 10∼30 nm uniformly distribute in W matrix.•Combining the interfacial relationship and the oxygen distribution, the mechanism of boundary purification and enhancement is proposed.</description><subject>Alloy powders</subject><subject>Bonding strength</subject><subject>Diffusion layers</subject><subject>Dispersion hardening alloys</subject><subject>Freeze drying</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Grain size distribution</subject><subject>Low temperature sintering</subject><subject>Particle size distribution</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Tungsten base alloys</subject><subject>Ultrafine grains</subject><subject>Ultrafines</subject><subject>W-Y2O3</subject><subject>Yttrium oxide</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCHguTUfbZOeRBa_YGEvingKaTJ1U3abmmSV9dfbsnv3NMzM-77DPAhdU5JTQqvbLu_0ZmP8NmeE1jkROaPFCZpRKXhWVFV9imakZmUmuZTn6CLGjpBRyekMqffsg604Ht2Djy4B7nXvB_9jIUQ8BBh0AIubPW4DwC9kNuxd_4m3kNbeYt1b7FLE0fUJwrQwax20mZqYnImX6KzVmwhXxzpHb48Pr4vnbLl6elncLzPDuUhZ04CuSl7JoiasZbqCqqGsLKW2hbG6qTSDtmFaSmobwkQp-Tg0vNYloRZaPkc3h9wh-K8dxKQ6vwv9eFIxTljBqBBiVJUHlQk-xgCtGoLb6rBXlKiJperUkaWaWCoi1Mhy9N0dfDC-8O0gqGgc9AasC2CSst79k_AHE6GBfw</recordid><startdate>20191025</startdate><enddate>20191025</enddate><creator>Hu, Weiqiang</creator><creator>Yu, Liming</creator><creator>Ma, Zongqing</creator><creator>Liu, Yongchang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20191025</creationdate><title>W-Y2O3 composite nanopowders prepared by freeze-drying method and its sintering characteristics</title><author>Hu, Weiqiang ; Yu, Liming ; Ma, Zongqing ; Liu, Yongchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-bbea653684902f2a6e6b12558ad4cdab6a2efb2a881db027583ab6c39a501def3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloy powders</topic><topic>Bonding strength</topic><topic>Diffusion layers</topic><topic>Dispersion hardening alloys</topic><topic>Freeze drying</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Grain size distribution</topic><topic>Low temperature sintering</topic><topic>Particle size distribution</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Tungsten base alloys</topic><topic>Ultrafine grains</topic><topic>Ultrafines</topic><topic>W-Y2O3</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Weiqiang</creatorcontrib><creatorcontrib>Yu, Liming</creatorcontrib><creatorcontrib>Ma, Zongqing</creatorcontrib><creatorcontrib>Liu, Yongchang</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Weiqiang</au><au>Yu, Liming</au><au>Ma, Zongqing</au><au>Liu, Yongchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>W-Y2O3 composite nanopowders prepared by freeze-drying method and its sintering characteristics</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-10-25</date><risdate>2019</risdate><volume>806</volume><spage>127</spage><epage>135</epage><pages>127-135</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>In order to prepare high performance oxide-dispersion-strengthened tungsten based alloys, the W-Y2O3 composite powder precursors were synthesized by novel freeze-drying method. The average W grain size of prepared W-Y2O3 composite powder is 14.2 nm, and corresponding grain size distribution is extremely narrow. The low-temperature sintered W-Y2O3 alloys possess an ultrafine W grain size of about 410 nm while maintaining a comparatively high sintering density of 98.1%. The Y2O3 particles (20–50 nm) with a W-Y-O diffusion layer and Y2WO6 particles (<20 nm) distribute uniformly within W grains and especially at W grain boundaries. These W-Y-O phases adsorb free oxygen impurity, resulting in the purification and strengthening of W matrix. What's more, coherent or semi-coherent interfaces are observed between Y2WO6 particles and W matrix, reinforcing the bonding strength of phase boundary. The combined action of the factors mentioned above leads to the hardness of sintered W-Y2O3 alloys in our work as high as 690.2 ± 32.0 HV0.2. These results indicate that the freeze-drying method and subsequent low temperature sintering is a promising method for preparing high performance W-Y2O3 alloys with ultrafine grains.
•The W-Y2O3 powders of 14.1 nm were prepared by novel freeze-drying method.•The low-temperature sintered W-Y2O3 alloys possess W grains of 400 nm meanwhile its density is 98.1%.•Nano oxide particles of 10∼30 nm uniformly distribute in W matrix.•Combining the interfacial relationship and the oxygen distribution, the mechanism of boundary purification and enhancement is proposed.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.07.214</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2019-10, Vol.806, p.127-135 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2302421777 |
source | Elsevier ScienceDirect Journals |
subjects | Alloy powders Bonding strength Diffusion layers Dispersion hardening alloys Freeze drying Grain boundaries Grain size Grain size distribution Low temperature sintering Particle size distribution Sintering Sintering (powder metallurgy) Tungsten base alloys Ultrafine grains Ultrafines W-Y2O3 Yttrium oxide |
title | W-Y2O3 composite nanopowders prepared by freeze-drying method and its sintering characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=W-Y2O3%20composite%20nanopowders%20prepared%20by%20freeze-drying%20method%20and%20its%20sintering%20characteristics&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Hu,%20Weiqiang&rft.date=2019-10-25&rft.volume=806&rft.spage=127&rft.epage=135&rft.pages=127-135&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.07.214&rft_dat=%3Cproquest_cross%3E2302421777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2302421777&rft_id=info:pmid/&rft_els_id=S092583881932729X&rfr_iscdi=true |