W-Y2O3 composite nanopowders prepared by freeze-drying method and its sintering characteristics

In order to prepare high performance oxide-dispersion-strengthened tungsten based alloys, the W-Y2O3 composite powder precursors were synthesized by novel freeze-drying method. The average W grain size of prepared W-Y2O3 composite powder is 14.2 nm, and corresponding grain size distribution is extre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2019-10, Vol.806, p.127-135
Hauptverfasser: Hu, Weiqiang, Yu, Liming, Ma, Zongqing, Liu, Yongchang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue
container_start_page 127
container_title Journal of alloys and compounds
container_volume 806
creator Hu, Weiqiang
Yu, Liming
Ma, Zongqing
Liu, Yongchang
description In order to prepare high performance oxide-dispersion-strengthened tungsten based alloys, the W-Y2O3 composite powder precursors were synthesized by novel freeze-drying method. The average W grain size of prepared W-Y2O3 composite powder is 14.2 nm, and corresponding grain size distribution is extremely narrow. The low-temperature sintered W-Y2O3 alloys possess an ultrafine W grain size of about 410 nm while maintaining a comparatively high sintering density of 98.1%. The Y2O3 particles (20–50 nm) with a W-Y-O diffusion layer and Y2WO6 particles (
doi_str_mv 10.1016/j.jallcom.2019.07.214
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2302421777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092583881932729X</els_id><sourcerecordid>2302421777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-bbea653684902f2a6e6b12558ad4cdab6a2efb2a881db027583ab6c39a501def3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCHguTUfbZOeRBa_YGEvingKaTJ1U3abmmSV9dfbsnv3NMzM-77DPAhdU5JTQqvbLu_0ZmP8NmeE1jkROaPFCZpRKXhWVFV9imakZmUmuZTn6CLGjpBRyekMqffsg604Ht2Djy4B7nXvB_9jIUQ8BBh0AIubPW4DwC9kNuxd_4m3kNbeYt1b7FLE0fUJwrQwax20mZqYnImX6KzVmwhXxzpHb48Pr4vnbLl6elncLzPDuUhZ04CuSl7JoiasZbqCqqGsLKW2hbG6qTSDtmFaSmobwkQp-Tg0vNYloRZaPkc3h9wh-K8dxKQ6vwv9eFIxTljBqBBiVJUHlQk-xgCtGoLb6rBXlKiJperUkaWaWCoi1Mhy9N0dfDC-8O0gqGgc9AasC2CSst79k_AHE6GBfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302421777</pqid></control><display><type>article</type><title>W-Y2O3 composite nanopowders prepared by freeze-drying method and its sintering characteristics</title><source>Elsevier ScienceDirect Journals</source><creator>Hu, Weiqiang ; Yu, Liming ; Ma, Zongqing ; Liu, Yongchang</creator><creatorcontrib>Hu, Weiqiang ; Yu, Liming ; Ma, Zongqing ; Liu, Yongchang</creatorcontrib><description>In order to prepare high performance oxide-dispersion-strengthened tungsten based alloys, the W-Y2O3 composite powder precursors were synthesized by novel freeze-drying method. The average W grain size of prepared W-Y2O3 composite powder is 14.2 nm, and corresponding grain size distribution is extremely narrow. The low-temperature sintered W-Y2O3 alloys possess an ultrafine W grain size of about 410 nm while maintaining a comparatively high sintering density of 98.1%. The Y2O3 particles (20–50 nm) with a W-Y-O diffusion layer and Y2WO6 particles (&lt;20 nm) distribute uniformly within W grains and especially at W grain boundaries. These W-Y-O phases adsorb free oxygen impurity, resulting in the purification and strengthening of W matrix. What's more, coherent or semi-coherent interfaces are observed between Y2WO6 particles and W matrix, reinforcing the bonding strength of phase boundary. The combined action of the factors mentioned above leads to the hardness of sintered W-Y2O3 alloys in our work as high as 690.2 ± 32.0 HV0.2. These results indicate that the freeze-drying method and subsequent low temperature sintering is a promising method for preparing high performance W-Y2O3 alloys with ultrafine grains. •The W-Y2O3 powders of 14.1 nm were prepared by novel freeze-drying method.•The low-temperature sintered W-Y2O3 alloys possess W grains of 400 nm meanwhile its density is 98.1%.•Nano oxide particles of 10∼30 nm uniformly distribute in W matrix.•Combining the interfacial relationship and the oxygen distribution, the mechanism of boundary purification and enhancement is proposed.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.07.214</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Alloy powders ; Bonding strength ; Diffusion layers ; Dispersion hardening alloys ; Freeze drying ; Grain boundaries ; Grain size ; Grain size distribution ; Low temperature sintering ; Particle size distribution ; Sintering ; Sintering (powder metallurgy) ; Tungsten base alloys ; Ultrafine grains ; Ultrafines ; W-Y2O3 ; Yttrium oxide</subject><ispartof>Journal of alloys and compounds, 2019-10, Vol.806, p.127-135</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-bbea653684902f2a6e6b12558ad4cdab6a2efb2a881db027583ab6c39a501def3</citedby><cites>FETCH-LOGICAL-c337t-bbea653684902f2a6e6b12558ad4cdab6a2efb2a881db027583ab6c39a501def3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.07.214$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Hu, Weiqiang</creatorcontrib><creatorcontrib>Yu, Liming</creatorcontrib><creatorcontrib>Ma, Zongqing</creatorcontrib><creatorcontrib>Liu, Yongchang</creatorcontrib><title>W-Y2O3 composite nanopowders prepared by freeze-drying method and its sintering characteristics</title><title>Journal of alloys and compounds</title><description>In order to prepare high performance oxide-dispersion-strengthened tungsten based alloys, the W-Y2O3 composite powder precursors were synthesized by novel freeze-drying method. The average W grain size of prepared W-Y2O3 composite powder is 14.2 nm, and corresponding grain size distribution is extremely narrow. The low-temperature sintered W-Y2O3 alloys possess an ultrafine W grain size of about 410 nm while maintaining a comparatively high sintering density of 98.1%. The Y2O3 particles (20–50 nm) with a W-Y-O diffusion layer and Y2WO6 particles (&lt;20 nm) distribute uniformly within W grains and especially at W grain boundaries. These W-Y-O phases adsorb free oxygen impurity, resulting in the purification and strengthening of W matrix. What's more, coherent or semi-coherent interfaces are observed between Y2WO6 particles and W matrix, reinforcing the bonding strength of phase boundary. The combined action of the factors mentioned above leads to the hardness of sintered W-Y2O3 alloys in our work as high as 690.2 ± 32.0 HV0.2. These results indicate that the freeze-drying method and subsequent low temperature sintering is a promising method for preparing high performance W-Y2O3 alloys with ultrafine grains. •The W-Y2O3 powders of 14.1 nm were prepared by novel freeze-drying method.•The low-temperature sintered W-Y2O3 alloys possess W grains of 400 nm meanwhile its density is 98.1%.•Nano oxide particles of 10∼30 nm uniformly distribute in W matrix.•Combining the interfacial relationship and the oxygen distribution, the mechanism of boundary purification and enhancement is proposed.</description><subject>Alloy powders</subject><subject>Bonding strength</subject><subject>Diffusion layers</subject><subject>Dispersion hardening alloys</subject><subject>Freeze drying</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Grain size distribution</subject><subject>Low temperature sintering</subject><subject>Particle size distribution</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Tungsten base alloys</subject><subject>Ultrafine grains</subject><subject>Ultrafines</subject><subject>W-Y2O3</subject><subject>Yttrium oxide</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCHguTUfbZOeRBa_YGEvingKaTJ1U3abmmSV9dfbsnv3NMzM-77DPAhdU5JTQqvbLu_0ZmP8NmeE1jkROaPFCZpRKXhWVFV9imakZmUmuZTn6CLGjpBRyekMqffsg604Ht2Djy4B7nXvB_9jIUQ8BBh0AIubPW4DwC9kNuxd_4m3kNbeYt1b7FLE0fUJwrQwax20mZqYnImX6KzVmwhXxzpHb48Pr4vnbLl6elncLzPDuUhZ04CuSl7JoiasZbqCqqGsLKW2hbG6qTSDtmFaSmobwkQp-Tg0vNYloRZaPkc3h9wh-K8dxKQ6vwv9eFIxTljBqBBiVJUHlQk-xgCtGoLb6rBXlKiJperUkaWaWCoi1Mhy9N0dfDC-8O0gqGgc9AasC2CSst79k_AHE6GBfw</recordid><startdate>20191025</startdate><enddate>20191025</enddate><creator>Hu, Weiqiang</creator><creator>Yu, Liming</creator><creator>Ma, Zongqing</creator><creator>Liu, Yongchang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20191025</creationdate><title>W-Y2O3 composite nanopowders prepared by freeze-drying method and its sintering characteristics</title><author>Hu, Weiqiang ; Yu, Liming ; Ma, Zongqing ; Liu, Yongchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-bbea653684902f2a6e6b12558ad4cdab6a2efb2a881db027583ab6c39a501def3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloy powders</topic><topic>Bonding strength</topic><topic>Diffusion layers</topic><topic>Dispersion hardening alloys</topic><topic>Freeze drying</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Grain size distribution</topic><topic>Low temperature sintering</topic><topic>Particle size distribution</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Tungsten base alloys</topic><topic>Ultrafine grains</topic><topic>Ultrafines</topic><topic>W-Y2O3</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Weiqiang</creatorcontrib><creatorcontrib>Yu, Liming</creatorcontrib><creatorcontrib>Ma, Zongqing</creatorcontrib><creatorcontrib>Liu, Yongchang</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Weiqiang</au><au>Yu, Liming</au><au>Ma, Zongqing</au><au>Liu, Yongchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>W-Y2O3 composite nanopowders prepared by freeze-drying method and its sintering characteristics</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-10-25</date><risdate>2019</risdate><volume>806</volume><spage>127</spage><epage>135</epage><pages>127-135</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>In order to prepare high performance oxide-dispersion-strengthened tungsten based alloys, the W-Y2O3 composite powder precursors were synthesized by novel freeze-drying method. The average W grain size of prepared W-Y2O3 composite powder is 14.2 nm, and corresponding grain size distribution is extremely narrow. The low-temperature sintered W-Y2O3 alloys possess an ultrafine W grain size of about 410 nm while maintaining a comparatively high sintering density of 98.1%. The Y2O3 particles (20–50 nm) with a W-Y-O diffusion layer and Y2WO6 particles (&lt;20 nm) distribute uniformly within W grains and especially at W grain boundaries. These W-Y-O phases adsorb free oxygen impurity, resulting in the purification and strengthening of W matrix. What's more, coherent or semi-coherent interfaces are observed between Y2WO6 particles and W matrix, reinforcing the bonding strength of phase boundary. The combined action of the factors mentioned above leads to the hardness of sintered W-Y2O3 alloys in our work as high as 690.2 ± 32.0 HV0.2. These results indicate that the freeze-drying method and subsequent low temperature sintering is a promising method for preparing high performance W-Y2O3 alloys with ultrafine grains. •The W-Y2O3 powders of 14.1 nm were prepared by novel freeze-drying method.•The low-temperature sintered W-Y2O3 alloys possess W grains of 400 nm meanwhile its density is 98.1%.•Nano oxide particles of 10∼30 nm uniformly distribute in W matrix.•Combining the interfacial relationship and the oxygen distribution, the mechanism of boundary purification and enhancement is proposed.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.07.214</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2019-10, Vol.806, p.127-135
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2302421777
source Elsevier ScienceDirect Journals
subjects Alloy powders
Bonding strength
Diffusion layers
Dispersion hardening alloys
Freeze drying
Grain boundaries
Grain size
Grain size distribution
Low temperature sintering
Particle size distribution
Sintering
Sintering (powder metallurgy)
Tungsten base alloys
Ultrafine grains
Ultrafines
W-Y2O3
Yttrium oxide
title W-Y2O3 composite nanopowders prepared by freeze-drying method and its sintering characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=W-Y2O3%20composite%20nanopowders%20prepared%20by%20freeze-drying%20method%20and%20its%20sintering%20characteristics&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Hu,%20Weiqiang&rft.date=2019-10-25&rft.volume=806&rft.spage=127&rft.epage=135&rft.pages=127-135&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.07.214&rft_dat=%3Cproquest_cross%3E2302421777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2302421777&rft_id=info:pmid/&rft_els_id=S092583881932729X&rfr_iscdi=true