Thermal conductivity in nanoscale polysilicon structures with applications in sensors
[Display omitted] •Thermal conductivity of nanowires is an order of magnitude less than bulk value.•Increased grain size (15 nm–25 nm) results in a 50% increase in thermal conductivity.•Phonon grain boundary scattering is the dominant factor in thin film polysilicon. Thermal conductivity of polysili...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. A. Physical. 2019-08, Vol.295, p.596-603 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 603 |
---|---|
container_issue | |
container_start_page | 596 |
container_title | Sensors and actuators. A. Physical. |
container_volume | 295 |
creator | Moradian, Sina Modarres-Zadeh, Mohammad J. Abdolvand, Reza |
description | [Display omitted]
•Thermal conductivity of nanowires is an order of magnitude less than bulk value.•Increased grain size (15 nm–25 nm) results in a 50% increase in thermal conductivity.•Phonon grain boundary scattering is the dominant factor in thin film polysilicon.
Thermal conductivity of polysilicon nanowires and thin films has been experimentally studied. Thermal conductivity has been measured with a microstructure fabricated alongside the polysilicon nanowires and thin films and a robust fabrication process has been developed. Results suggest that the in-plane and out-of-plane thermal conductivity are limited by phonon grain boundary and film boundary scattering respectively. The nanowires are fabricated by patterning a thin layer of low-pressure chemical vapor deposited polysilicon using e-beam lithography, consequently circumventing the prevalent process of pick-and-place process, in which metallic contacts are deposited to insure significant heat flow to the nanowire. By avoiding the need for metallic contacts a significant source of error in the calculation of the thermal conductivity is eliminated. Thermal conductivity of nanowires with a cross section of ˜60 nm × 100 nm and thin film with a cross-section of 3μm × 108 nm were measured to be both ˜3.5 W/m.K, suggeting that the thermal conductiviy is dominated by the out-of-plane phonon scattering in both cases. This is an almost 8× reduction from the thermal conductivity of bulk polysilicon at ˜30 W/m.K. The effect of grain size and doping concentration on the thermal conductivity of ˜100 nm polysilicon films is also experimentally studied. |
doi_str_mv | 10.1016/j.sna.2019.06.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2302412437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424719303796</els_id><sourcerecordid>2302412437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-86cff7001e3139051b7a30f1fe24636685bb3bcf69451614b161f35fd103c2653</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9giMSecP-I0YkKIL6kSSztbjmOrjlI72E5R_z2uysxyN9z73J0ehO4xVBgwfxyq6GRFALcV8AqAX6AFXjW0pMDbS7SAlrCSEdZco5sYBwCgtGkWaLvZ6bCXY6G862eV7MGmY2Fd4aTzUclRF5Mfj9GONieKmEIOzUHH4semXSGnKQ9kst7FExW1iz7EW3Rl5Bj13V9fou3b6-blo1x_vX--PK9LRUmdyhVXxjQAWFNMW6hx10gKBhtNGKecr-quo50yvGU15ph1uRhamx4DVYTXdIkeznun4L9nHZMY_BxcPikIBcIwYbTJKXxOqeBjDNqIKdi9DEeBQZzsiUFke-JkTwAX2V5mns6Mzu8frA4iKqud0r0NWiXRe_sP_QsC5nhN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302412437</pqid></control><display><type>article</type><title>Thermal conductivity in nanoscale polysilicon structures with applications in sensors</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Moradian, Sina ; Modarres-Zadeh, Mohammad J. ; Abdolvand, Reza</creator><creatorcontrib>Moradian, Sina ; Modarres-Zadeh, Mohammad J. ; Abdolvand, Reza</creatorcontrib><description>[Display omitted]
•Thermal conductivity of nanowires is an order of magnitude less than bulk value.•Increased grain size (15 nm–25 nm) results in a 50% increase in thermal conductivity.•Phonon grain boundary scattering is the dominant factor in thin film polysilicon.
Thermal conductivity of polysilicon nanowires and thin films has been experimentally studied. Thermal conductivity has been measured with a microstructure fabricated alongside the polysilicon nanowires and thin films and a robust fabrication process has been developed. Results suggest that the in-plane and out-of-plane thermal conductivity are limited by phonon grain boundary and film boundary scattering respectively. The nanowires are fabricated by patterning a thin layer of low-pressure chemical vapor deposited polysilicon using e-beam lithography, consequently circumventing the prevalent process of pick-and-place process, in which metallic contacts are deposited to insure significant heat flow to the nanowire. By avoiding the need for metallic contacts a significant source of error in the calculation of the thermal conductivity is eliminated. Thermal conductivity of nanowires with a cross section of ˜60 nm × 100 nm and thin film with a cross-section of 3μm × 108 nm were measured to be both ˜3.5 W/m.K, suggeting that the thermal conductiviy is dominated by the out-of-plane phonon scattering in both cases. This is an almost 8× reduction from the thermal conductivity of bulk polysilicon at ˜30 W/m.K. The effect of grain size and doping concentration on the thermal conductivity of ˜100 nm polysilicon films is also experimentally studied.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2019.06.006</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Chemical vapor deposition ; Cross-sections ; Electron beams ; Grain boundaries ; Grain size ; Heat conductivity ; Heat transfer ; Heat transmission ; Low pressure ; Microstructure ; Nanowire ; Nanowires ; Organic chemistry ; Phonons ; Scattering ; Sensors ; Silicon ; Thermal conductivity ; Thermoelectric ; Thin film ; Thin films</subject><ispartof>Sensors and actuators. A. Physical., 2019-08, Vol.295, p.596-603</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-86cff7001e3139051b7a30f1fe24636685bb3bcf69451614b161f35fd103c2653</citedby><cites>FETCH-LOGICAL-c325t-86cff7001e3139051b7a30f1fe24636685bb3bcf69451614b161f35fd103c2653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924424719303796$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Moradian, Sina</creatorcontrib><creatorcontrib>Modarres-Zadeh, Mohammad J.</creatorcontrib><creatorcontrib>Abdolvand, Reza</creatorcontrib><title>Thermal conductivity in nanoscale polysilicon structures with applications in sensors</title><title>Sensors and actuators. A. Physical.</title><description>[Display omitted]
•Thermal conductivity of nanowires is an order of magnitude less than bulk value.•Increased grain size (15 nm–25 nm) results in a 50% increase in thermal conductivity.•Phonon grain boundary scattering is the dominant factor in thin film polysilicon.
Thermal conductivity of polysilicon nanowires and thin films has been experimentally studied. Thermal conductivity has been measured with a microstructure fabricated alongside the polysilicon nanowires and thin films and a robust fabrication process has been developed. Results suggest that the in-plane and out-of-plane thermal conductivity are limited by phonon grain boundary and film boundary scattering respectively. The nanowires are fabricated by patterning a thin layer of low-pressure chemical vapor deposited polysilicon using e-beam lithography, consequently circumventing the prevalent process of pick-and-place process, in which metallic contacts are deposited to insure significant heat flow to the nanowire. By avoiding the need for metallic contacts a significant source of error in the calculation of the thermal conductivity is eliminated. Thermal conductivity of nanowires with a cross section of ˜60 nm × 100 nm and thin film with a cross-section of 3μm × 108 nm were measured to be both ˜3.5 W/m.K, suggeting that the thermal conductiviy is dominated by the out-of-plane phonon scattering in both cases. This is an almost 8× reduction from the thermal conductivity of bulk polysilicon at ˜30 W/m.K. The effect of grain size and doping concentration on the thermal conductivity of ˜100 nm polysilicon films is also experimentally studied.</description><subject>Chemical vapor deposition</subject><subject>Cross-sections</subject><subject>Electron beams</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Low pressure</subject><subject>Microstructure</subject><subject>Nanowire</subject><subject>Nanowires</subject><subject>Organic chemistry</subject><subject>Phonons</subject><subject>Scattering</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Thermal conductivity</subject><subject>Thermoelectric</subject><subject>Thin film</subject><subject>Thin films</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9giMSecP-I0YkKIL6kSSztbjmOrjlI72E5R_z2uysxyN9z73J0ehO4xVBgwfxyq6GRFALcV8AqAX6AFXjW0pMDbS7SAlrCSEdZco5sYBwCgtGkWaLvZ6bCXY6G862eV7MGmY2Fd4aTzUclRF5Mfj9GONieKmEIOzUHH4semXSGnKQ9kst7FExW1iz7EW3Rl5Bj13V9fou3b6-blo1x_vX--PK9LRUmdyhVXxjQAWFNMW6hx10gKBhtNGKecr-quo50yvGU15ph1uRhamx4DVYTXdIkeznun4L9nHZMY_BxcPikIBcIwYbTJKXxOqeBjDNqIKdi9DEeBQZzsiUFke-JkTwAX2V5mns6Mzu8frA4iKqud0r0NWiXRe_sP_QsC5nhN</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Moradian, Sina</creator><creator>Modarres-Zadeh, Mohammad J.</creator><creator>Abdolvand, Reza</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20190815</creationdate><title>Thermal conductivity in nanoscale polysilicon structures with applications in sensors</title><author>Moradian, Sina ; Modarres-Zadeh, Mohammad J. ; Abdolvand, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-86cff7001e3139051b7a30f1fe24636685bb3bcf69451614b161f35fd103c2653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical vapor deposition</topic><topic>Cross-sections</topic><topic>Electron beams</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Low pressure</topic><topic>Microstructure</topic><topic>Nanowire</topic><topic>Nanowires</topic><topic>Organic chemistry</topic><topic>Phonons</topic><topic>Scattering</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Thermal conductivity</topic><topic>Thermoelectric</topic><topic>Thin film</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moradian, Sina</creatorcontrib><creatorcontrib>Modarres-Zadeh, Mohammad J.</creatorcontrib><creatorcontrib>Abdolvand, Reza</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moradian, Sina</au><au>Modarres-Zadeh, Mohammad J.</au><au>Abdolvand, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity in nanoscale polysilicon structures with applications in sensors</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2019-08-15</date><risdate>2019</risdate><volume>295</volume><spage>596</spage><epage>603</epage><pages>596-603</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>[Display omitted]
•Thermal conductivity of nanowires is an order of magnitude less than bulk value.•Increased grain size (15 nm–25 nm) results in a 50% increase in thermal conductivity.•Phonon grain boundary scattering is the dominant factor in thin film polysilicon.
Thermal conductivity of polysilicon nanowires and thin films has been experimentally studied. Thermal conductivity has been measured with a microstructure fabricated alongside the polysilicon nanowires and thin films and a robust fabrication process has been developed. Results suggest that the in-plane and out-of-plane thermal conductivity are limited by phonon grain boundary and film boundary scattering respectively. The nanowires are fabricated by patterning a thin layer of low-pressure chemical vapor deposited polysilicon using e-beam lithography, consequently circumventing the prevalent process of pick-and-place process, in which metallic contacts are deposited to insure significant heat flow to the nanowire. By avoiding the need for metallic contacts a significant source of error in the calculation of the thermal conductivity is eliminated. Thermal conductivity of nanowires with a cross section of ˜60 nm × 100 nm and thin film with a cross-section of 3μm × 108 nm were measured to be both ˜3.5 W/m.K, suggeting that the thermal conductiviy is dominated by the out-of-plane phonon scattering in both cases. This is an almost 8× reduction from the thermal conductivity of bulk polysilicon at ˜30 W/m.K. The effect of grain size and doping concentration on the thermal conductivity of ˜100 nm polysilicon films is also experimentally studied.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2019.06.006</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-4247 |
ispartof | Sensors and actuators. A. Physical., 2019-08, Vol.295, p.596-603 |
issn | 0924-4247 1873-3069 |
language | eng |
recordid | cdi_proquest_journals_2302412437 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Chemical vapor deposition Cross-sections Electron beams Grain boundaries Grain size Heat conductivity Heat transfer Heat transmission Low pressure Microstructure Nanowire Nanowires Organic chemistry Phonons Scattering Sensors Silicon Thermal conductivity Thermoelectric Thin film Thin films |
title | Thermal conductivity in nanoscale polysilicon structures with applications in sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20in%20nanoscale%20polysilicon%20structures%20with%20applications%20in%20sensors&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Moradian,%20Sina&rft.date=2019-08-15&rft.volume=295&rft.spage=596&rft.epage=603&rft.pages=596-603&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2019.06.006&rft_dat=%3Cproquest_cross%3E2302412437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2302412437&rft_id=info:pmid/&rft_els_id=S0924424719303796&rfr_iscdi=true |