Thermal conductivity in nanoscale polysilicon structures with applications in sensors

[Display omitted] •Thermal conductivity of nanowires is an order of magnitude less than bulk value.•Increased grain size (15 nm–25 nm) results in a 50% increase in thermal conductivity.•Phonon grain boundary scattering is the dominant factor in thin film polysilicon. Thermal conductivity of polysili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2019-08, Vol.295, p.596-603
Hauptverfasser: Moradian, Sina, Modarres-Zadeh, Mohammad J., Abdolvand, Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 603
container_issue
container_start_page 596
container_title Sensors and actuators. A. Physical.
container_volume 295
creator Moradian, Sina
Modarres-Zadeh, Mohammad J.
Abdolvand, Reza
description [Display omitted] •Thermal conductivity of nanowires is an order of magnitude less than bulk value.•Increased grain size (15 nm–25 nm) results in a 50% increase in thermal conductivity.•Phonon grain boundary scattering is the dominant factor in thin film polysilicon. Thermal conductivity of polysilicon nanowires and thin films has been experimentally studied. Thermal conductivity has been measured with a microstructure fabricated alongside the polysilicon nanowires and thin films and a robust fabrication process has been developed. Results suggest that the in-plane and out-of-plane thermal conductivity are limited by phonon grain boundary and film boundary scattering respectively. The nanowires are fabricated by patterning a thin layer of low-pressure chemical vapor deposited polysilicon using e-beam lithography, consequently circumventing the prevalent process of pick-and-place process, in which metallic contacts are deposited to insure significant heat flow to the nanowire. By avoiding the need for metallic contacts a significant source of error in the calculation of the thermal conductivity is eliminated. Thermal conductivity of nanowires with a cross section of ˜60 nm × 100 nm and thin film with a cross-section of 3μm × 108 nm were measured to be both ˜3.5 W/m.K, suggeting that the thermal conductiviy is dominated by the out-of-plane phonon scattering in both cases. This is an almost 8× reduction from the thermal conductivity of bulk polysilicon at ˜30 W/m.K. The effect of grain size and doping concentration on the thermal conductivity of ˜100 nm polysilicon films is also experimentally studied.
doi_str_mv 10.1016/j.sna.2019.06.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2302412437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424719303796</els_id><sourcerecordid>2302412437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-86cff7001e3139051b7a30f1fe24636685bb3bcf69451614b161f35fd103c2653</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9giMSecP-I0YkKIL6kSSztbjmOrjlI72E5R_z2uysxyN9z73J0ehO4xVBgwfxyq6GRFALcV8AqAX6AFXjW0pMDbS7SAlrCSEdZco5sYBwCgtGkWaLvZ6bCXY6G862eV7MGmY2Fd4aTzUclRF5Mfj9GONieKmEIOzUHH4semXSGnKQ9kst7FExW1iz7EW3Rl5Bj13V9fou3b6-blo1x_vX--PK9LRUmdyhVXxjQAWFNMW6hx10gKBhtNGKecr-quo50yvGU15ph1uRhamx4DVYTXdIkeznun4L9nHZMY_BxcPikIBcIwYbTJKXxOqeBjDNqIKdi9DEeBQZzsiUFke-JkTwAX2V5mns6Mzu8frA4iKqud0r0NWiXRe_sP_QsC5nhN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2302412437</pqid></control><display><type>article</type><title>Thermal conductivity in nanoscale polysilicon structures with applications in sensors</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Moradian, Sina ; Modarres-Zadeh, Mohammad J. ; Abdolvand, Reza</creator><creatorcontrib>Moradian, Sina ; Modarres-Zadeh, Mohammad J. ; Abdolvand, Reza</creatorcontrib><description>[Display omitted] •Thermal conductivity of nanowires is an order of magnitude less than bulk value.•Increased grain size (15 nm–25 nm) results in a 50% increase in thermal conductivity.•Phonon grain boundary scattering is the dominant factor in thin film polysilicon. Thermal conductivity of polysilicon nanowires and thin films has been experimentally studied. Thermal conductivity has been measured with a microstructure fabricated alongside the polysilicon nanowires and thin films and a robust fabrication process has been developed. Results suggest that the in-plane and out-of-plane thermal conductivity are limited by phonon grain boundary and film boundary scattering respectively. The nanowires are fabricated by patterning a thin layer of low-pressure chemical vapor deposited polysilicon using e-beam lithography, consequently circumventing the prevalent process of pick-and-place process, in which metallic contacts are deposited to insure significant heat flow to the nanowire. By avoiding the need for metallic contacts a significant source of error in the calculation of the thermal conductivity is eliminated. Thermal conductivity of nanowires with a cross section of ˜60 nm × 100 nm and thin film with a cross-section of 3μm × 108 nm were measured to be both ˜3.5 W/m.K, suggeting that the thermal conductiviy is dominated by the out-of-plane phonon scattering in both cases. This is an almost 8× reduction from the thermal conductivity of bulk polysilicon at ˜30 W/m.K. The effect of grain size and doping concentration on the thermal conductivity of ˜100 nm polysilicon films is also experimentally studied.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2019.06.006</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Chemical vapor deposition ; Cross-sections ; Electron beams ; Grain boundaries ; Grain size ; Heat conductivity ; Heat transfer ; Heat transmission ; Low pressure ; Microstructure ; Nanowire ; Nanowires ; Organic chemistry ; Phonons ; Scattering ; Sensors ; Silicon ; Thermal conductivity ; Thermoelectric ; Thin film ; Thin films</subject><ispartof>Sensors and actuators. A. Physical., 2019-08, Vol.295, p.596-603</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-86cff7001e3139051b7a30f1fe24636685bb3bcf69451614b161f35fd103c2653</citedby><cites>FETCH-LOGICAL-c325t-86cff7001e3139051b7a30f1fe24636685bb3bcf69451614b161f35fd103c2653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924424719303796$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Moradian, Sina</creatorcontrib><creatorcontrib>Modarres-Zadeh, Mohammad J.</creatorcontrib><creatorcontrib>Abdolvand, Reza</creatorcontrib><title>Thermal conductivity in nanoscale polysilicon structures with applications in sensors</title><title>Sensors and actuators. A. Physical.</title><description>[Display omitted] •Thermal conductivity of nanowires is an order of magnitude less than bulk value.•Increased grain size (15 nm–25 nm) results in a 50% increase in thermal conductivity.•Phonon grain boundary scattering is the dominant factor in thin film polysilicon. Thermal conductivity of polysilicon nanowires and thin films has been experimentally studied. Thermal conductivity has been measured with a microstructure fabricated alongside the polysilicon nanowires and thin films and a robust fabrication process has been developed. Results suggest that the in-plane and out-of-plane thermal conductivity are limited by phonon grain boundary and film boundary scattering respectively. The nanowires are fabricated by patterning a thin layer of low-pressure chemical vapor deposited polysilicon using e-beam lithography, consequently circumventing the prevalent process of pick-and-place process, in which metallic contacts are deposited to insure significant heat flow to the nanowire. By avoiding the need for metallic contacts a significant source of error in the calculation of the thermal conductivity is eliminated. Thermal conductivity of nanowires with a cross section of ˜60 nm × 100 nm and thin film with a cross-section of 3μm × 108 nm were measured to be both ˜3.5 W/m.K, suggeting that the thermal conductiviy is dominated by the out-of-plane phonon scattering in both cases. This is an almost 8× reduction from the thermal conductivity of bulk polysilicon at ˜30 W/m.K. The effect of grain size and doping concentration on the thermal conductivity of ˜100 nm polysilicon films is also experimentally studied.</description><subject>Chemical vapor deposition</subject><subject>Cross-sections</subject><subject>Electron beams</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Low pressure</subject><subject>Microstructure</subject><subject>Nanowire</subject><subject>Nanowires</subject><subject>Organic chemistry</subject><subject>Phonons</subject><subject>Scattering</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Thermal conductivity</subject><subject>Thermoelectric</subject><subject>Thin film</subject><subject>Thin films</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9giMSecP-I0YkKIL6kSSztbjmOrjlI72E5R_z2uysxyN9z73J0ehO4xVBgwfxyq6GRFALcV8AqAX6AFXjW0pMDbS7SAlrCSEdZco5sYBwCgtGkWaLvZ6bCXY6G862eV7MGmY2Fd4aTzUclRF5Mfj9GONieKmEIOzUHH4semXSGnKQ9kst7FExW1iz7EW3Rl5Bj13V9fou3b6-blo1x_vX--PK9LRUmdyhVXxjQAWFNMW6hx10gKBhtNGKecr-quo50yvGU15ph1uRhamx4DVYTXdIkeznun4L9nHZMY_BxcPikIBcIwYbTJKXxOqeBjDNqIKdi9DEeBQZzsiUFke-JkTwAX2V5mns6Mzu8frA4iKqud0r0NWiXRe_sP_QsC5nhN</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Moradian, Sina</creator><creator>Modarres-Zadeh, Mohammad J.</creator><creator>Abdolvand, Reza</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20190815</creationdate><title>Thermal conductivity in nanoscale polysilicon structures with applications in sensors</title><author>Moradian, Sina ; Modarres-Zadeh, Mohammad J. ; Abdolvand, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-86cff7001e3139051b7a30f1fe24636685bb3bcf69451614b161f35fd103c2653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemical vapor deposition</topic><topic>Cross-sections</topic><topic>Electron beams</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Low pressure</topic><topic>Microstructure</topic><topic>Nanowire</topic><topic>Nanowires</topic><topic>Organic chemistry</topic><topic>Phonons</topic><topic>Scattering</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Thermal conductivity</topic><topic>Thermoelectric</topic><topic>Thin film</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moradian, Sina</creatorcontrib><creatorcontrib>Modarres-Zadeh, Mohammad J.</creatorcontrib><creatorcontrib>Abdolvand, Reza</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moradian, Sina</au><au>Modarres-Zadeh, Mohammad J.</au><au>Abdolvand, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity in nanoscale polysilicon structures with applications in sensors</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2019-08-15</date><risdate>2019</risdate><volume>295</volume><spage>596</spage><epage>603</epage><pages>596-603</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>[Display omitted] •Thermal conductivity of nanowires is an order of magnitude less than bulk value.•Increased grain size (15 nm–25 nm) results in a 50% increase in thermal conductivity.•Phonon grain boundary scattering is the dominant factor in thin film polysilicon. Thermal conductivity of polysilicon nanowires and thin films has been experimentally studied. Thermal conductivity has been measured with a microstructure fabricated alongside the polysilicon nanowires and thin films and a robust fabrication process has been developed. Results suggest that the in-plane and out-of-plane thermal conductivity are limited by phonon grain boundary and film boundary scattering respectively. The nanowires are fabricated by patterning a thin layer of low-pressure chemical vapor deposited polysilicon using e-beam lithography, consequently circumventing the prevalent process of pick-and-place process, in which metallic contacts are deposited to insure significant heat flow to the nanowire. By avoiding the need for metallic contacts a significant source of error in the calculation of the thermal conductivity is eliminated. Thermal conductivity of nanowires with a cross section of ˜60 nm × 100 nm and thin film with a cross-section of 3μm × 108 nm were measured to be both ˜3.5 W/m.K, suggeting that the thermal conductiviy is dominated by the out-of-plane phonon scattering in both cases. This is an almost 8× reduction from the thermal conductivity of bulk polysilicon at ˜30 W/m.K. The effect of grain size and doping concentration on the thermal conductivity of ˜100 nm polysilicon films is also experimentally studied.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2019.06.006</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2019-08, Vol.295, p.596-603
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_journals_2302412437
source Elsevier ScienceDirect Journals Complete
subjects Chemical vapor deposition
Cross-sections
Electron beams
Grain boundaries
Grain size
Heat conductivity
Heat transfer
Heat transmission
Low pressure
Microstructure
Nanowire
Nanowires
Organic chemistry
Phonons
Scattering
Sensors
Silicon
Thermal conductivity
Thermoelectric
Thin film
Thin films
title Thermal conductivity in nanoscale polysilicon structures with applications in sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20in%20nanoscale%20polysilicon%20structures%20with%20applications%20in%20sensors&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Moradian,%20Sina&rft.date=2019-08-15&rft.volume=295&rft.spage=596&rft.epage=603&rft.pages=596-603&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2019.06.006&rft_dat=%3Cproquest_cross%3E2302412437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2302412437&rft_id=info:pmid/&rft_els_id=S0924424719303796&rfr_iscdi=true