Optimal Risk-Based Group Testing
Group testing (i.e., testing multiple subjects simultaneously with a single test) is essential for classifying a large population of subjects as positive or negative for a binary characteristic (e.g., presence of a disease). We study optimal group testing designs under subject-specific risk characte...
Gespeichert in:
Veröffentlicht in: | Management science 2019-09, Vol.65 (9), p.4365-4384 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4384 |
---|---|
container_issue | 9 |
container_start_page | 4365 |
container_title | Management science |
container_volume | 65 |
creator | Aprahamian, Hrayer Bish, Douglas R. Bish, Ebru K. |
description | Group testing (i.e., testing multiple subjects simultaneously with a single test) is essential for classifying a large population of subjects as
positive
or
negative
for a binary characteristic (e.g., presence of a disease). We study optimal group testing designs under subject-specific risk characteristics and imperfect tests, considering classification accuracy-, efficiency- and equity-based objectives, and characterize important structural properties of optimal testing designs. These properties allow us to model the testing design problems as partitioning problems, develop efficient algorithms, and derive insights on equity versus accuracy trade-off. One of our models reduces to a constrained shortest path problem, for a special case of which we develop a polynomial-time algorithm. We also show that determining an optimal risk-based Dorfman testing scheme that minimizes the expected number of tests is tractable, resolving an open conjecture. We demonstrate the value of optimal risk-based testing schemes with a case study of public health screening.
This paper was accepted by Yinyu Ye, optimization. |
doi_str_mv | 10.1287/mnsc.2018.3138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2301470810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2301470810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-4d83c9aadca9a7abc375fe9d96ab623081f5f274ca990cd7594f9af4856393b93</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4M4sG5ePRc8p74kTZMcdegmDAYyzyFNG-lcf5i0B_97U-rd04P3vj8eH4TuCWSESvHYdsFmFIjMGGHyCiWE0wJzDuQaJQCUY6JA3aDbEM4AIKQoEpQeh7FpzSV9b8IXfjahrtKd76chPdVhbLrPDVo5cwn13d9co4_Xl9N2jw_H3dv26YAtEzDivJLMKmMqa5QRpoxb7mpVqcKUBWUgieOOijyeFdhKcJU7ZVwuecEUKxVbo4cld_D99xS79bmffBcrdbSTXMQIiKpsUVnfh-Brpwcf3_c_moCeKeiZgp4p6JlCNODF0HSu9234T_8LnYZdZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301470810</pqid></control><display><type>article</type><title>Optimal Risk-Based Group Testing</title><source>INFORMS PubsOnLine</source><source>EBSCOhost Business Source Complete</source><creator>Aprahamian, Hrayer ; Bish, Douglas R. ; Bish, Ebru K.</creator><creatorcontrib>Aprahamian, Hrayer ; Bish, Douglas R. ; Bish, Ebru K.</creatorcontrib><description>Group testing (i.e., testing multiple subjects simultaneously with a single test) is essential for classifying a large population of subjects as
positive
or
negative
for a binary characteristic (e.g., presence of a disease). We study optimal group testing designs under subject-specific risk characteristics and imperfect tests, considering classification accuracy-, efficiency- and equity-based objectives, and characterize important structural properties of optimal testing designs. These properties allow us to model the testing design problems as partitioning problems, develop efficient algorithms, and derive insights on equity versus accuracy trade-off. One of our models reduces to a constrained shortest path problem, for a special case of which we develop a polynomial-time algorithm. We also show that determining an optimal risk-based Dorfman testing scheme that minimizes the expected number of tests is tractable, resolving an open conjecture. We demonstrate the value of optimal risk-based testing schemes with a case study of public health screening.
This paper was accepted by Yinyu Ye, optimization.</description><identifier>ISSN: 0025-1909</identifier><identifier>EISSN: 1526-5501</identifier><identifier>DOI: 10.1287/mnsc.2018.3138</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; Classification ; classification errors ; combinatorial optimization ; constrained shortest path ; Dorfman testing ; equity ; group testing ; Health risk assessment ; Management science ; Medical screening ; Public health ; risk-based testing ; Testing</subject><ispartof>Management science, 2019-09, Vol.65 (9), p.4365-4384</ispartof><rights>Copyright Institute for Operations Research and the Management Sciences Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-4d83c9aadca9a7abc375fe9d96ab623081f5f274ca990cd7594f9af4856393b93</citedby><cites>FETCH-LOGICAL-c370t-4d83c9aadca9a7abc375fe9d96ab623081f5f274ca990cd7594f9af4856393b93</cites><orcidid>0000-0002-8750-2366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mnsc.2018.3138$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,62616</link.rule.ids></links><search><creatorcontrib>Aprahamian, Hrayer</creatorcontrib><creatorcontrib>Bish, Douglas R.</creatorcontrib><creatorcontrib>Bish, Ebru K.</creatorcontrib><title>Optimal Risk-Based Group Testing</title><title>Management science</title><description>Group testing (i.e., testing multiple subjects simultaneously with a single test) is essential for classifying a large population of subjects as
positive
or
negative
for a binary characteristic (e.g., presence of a disease). We study optimal group testing designs under subject-specific risk characteristics and imperfect tests, considering classification accuracy-, efficiency- and equity-based objectives, and characterize important structural properties of optimal testing designs. These properties allow us to model the testing design problems as partitioning problems, develop efficient algorithms, and derive insights on equity versus accuracy trade-off. One of our models reduces to a constrained shortest path problem, for a special case of which we develop a polynomial-time algorithm. We also show that determining an optimal risk-based Dorfman testing scheme that minimizes the expected number of tests is tractable, resolving an open conjecture. We demonstrate the value of optimal risk-based testing schemes with a case study of public health screening.
This paper was accepted by Yinyu Ye, optimization.</description><subject>Algorithms</subject><subject>Classification</subject><subject>classification errors</subject><subject>combinatorial optimization</subject><subject>constrained shortest path</subject><subject>Dorfman testing</subject><subject>equity</subject><subject>group testing</subject><subject>Health risk assessment</subject><subject>Management science</subject><subject>Medical screening</subject><subject>Public health</subject><subject>risk-based testing</subject><subject>Testing</subject><issn>0025-1909</issn><issn>1526-5501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUx4M4sG5ePRc8p74kTZMcdegmDAYyzyFNG-lcf5i0B_97U-rd04P3vj8eH4TuCWSESvHYdsFmFIjMGGHyCiWE0wJzDuQaJQCUY6JA3aDbEM4AIKQoEpQeh7FpzSV9b8IXfjahrtKd76chPdVhbLrPDVo5cwn13d9co4_Xl9N2jw_H3dv26YAtEzDivJLMKmMqa5QRpoxb7mpVqcKUBWUgieOOijyeFdhKcJU7ZVwuecEUKxVbo4cld_D99xS79bmffBcrdbSTXMQIiKpsUVnfh-Brpwcf3_c_moCeKeiZgp4p6JlCNODF0HSu9234T_8LnYZdZA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Aprahamian, Hrayer</creator><creator>Bish, Douglas R.</creator><creator>Bish, Ebru K.</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0002-8750-2366</orcidid></search><sort><creationdate>20190901</creationdate><title>Optimal Risk-Based Group Testing</title><author>Aprahamian, Hrayer ; Bish, Douglas R. ; Bish, Ebru K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-4d83c9aadca9a7abc375fe9d96ab623081f5f274ca990cd7594f9af4856393b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>classification errors</topic><topic>combinatorial optimization</topic><topic>constrained shortest path</topic><topic>Dorfman testing</topic><topic>equity</topic><topic>group testing</topic><topic>Health risk assessment</topic><topic>Management science</topic><topic>Medical screening</topic><topic>Public health</topic><topic>risk-based testing</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aprahamian, Hrayer</creatorcontrib><creatorcontrib>Bish, Douglas R.</creatorcontrib><creatorcontrib>Bish, Ebru K.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aprahamian, Hrayer</au><au>Bish, Douglas R.</au><au>Bish, Ebru K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Risk-Based Group Testing</atitle><jtitle>Management science</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>65</volume><issue>9</issue><spage>4365</spage><epage>4384</epage><pages>4365-4384</pages><issn>0025-1909</issn><eissn>1526-5501</eissn><abstract>Group testing (i.e., testing multiple subjects simultaneously with a single test) is essential for classifying a large population of subjects as
positive
or
negative
for a binary characteristic (e.g., presence of a disease). We study optimal group testing designs under subject-specific risk characteristics and imperfect tests, considering classification accuracy-, efficiency- and equity-based objectives, and characterize important structural properties of optimal testing designs. These properties allow us to model the testing design problems as partitioning problems, develop efficient algorithms, and derive insights on equity versus accuracy trade-off. One of our models reduces to a constrained shortest path problem, for a special case of which we develop a polynomial-time algorithm. We also show that determining an optimal risk-based Dorfman testing scheme that minimizes the expected number of tests is tractable, resolving an open conjecture. We demonstrate the value of optimal risk-based testing schemes with a case study of public health screening.
This paper was accepted by Yinyu Ye, optimization.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/mnsc.2018.3138</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8750-2366</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-1909 |
ispartof | Management science, 2019-09, Vol.65 (9), p.4365-4384 |
issn | 0025-1909 1526-5501 |
language | eng |
recordid | cdi_proquest_journals_2301470810 |
source | INFORMS PubsOnLine; EBSCOhost Business Source Complete |
subjects | Algorithms Classification classification errors combinatorial optimization constrained shortest path Dorfman testing equity group testing Health risk assessment Management science Medical screening Public health risk-based testing Testing |
title | Optimal Risk-Based Group Testing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Risk-Based%20Group%20Testing&rft.jtitle=Management%20science&rft.au=Aprahamian,%20Hrayer&rft.date=2019-09-01&rft.volume=65&rft.issue=9&rft.spage=4365&rft.epage=4384&rft.pages=4365-4384&rft.issn=0025-1909&rft.eissn=1526-5501&rft_id=info:doi/10.1287/mnsc.2018.3138&rft_dat=%3Cproquest_cross%3E2301470810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301470810&rft_id=info:pmid/&rfr_iscdi=true |