Optimal Risk-Based Group Testing

Group testing (i.e., testing multiple subjects simultaneously with a single test) is essential for classifying a large population of subjects as positive or negative for a binary characteristic (e.g., presence of a disease). We study optimal group testing designs under subject-specific risk characte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Management science 2019-09, Vol.65 (9), p.4365-4384
Hauptverfasser: Aprahamian, Hrayer, Bish, Douglas R., Bish, Ebru K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4384
container_issue 9
container_start_page 4365
container_title Management science
container_volume 65
creator Aprahamian, Hrayer
Bish, Douglas R.
Bish, Ebru K.
description Group testing (i.e., testing multiple subjects simultaneously with a single test) is essential for classifying a large population of subjects as positive or negative for a binary characteristic (e.g., presence of a disease). We study optimal group testing designs under subject-specific risk characteristics and imperfect tests, considering classification accuracy-, efficiency- and equity-based objectives, and characterize important structural properties of optimal testing designs. These properties allow us to model the testing design problems as partitioning problems, develop efficient algorithms, and derive insights on equity versus accuracy trade-off. One of our models reduces to a constrained shortest path problem, for a special case of which we develop a polynomial-time algorithm. We also show that determining an optimal risk-based Dorfman testing scheme that minimizes the expected number of tests is tractable, resolving an open conjecture. We demonstrate the value of optimal risk-based testing schemes with a case study of public health screening. This paper was accepted by Yinyu Ye, optimization.
doi_str_mv 10.1287/mnsc.2018.3138
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2301470810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2301470810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-4d83c9aadca9a7abc375fe9d96ab623081f5f274ca990cd7594f9af4856393b93</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4M4sG5ePRc8p74kTZMcdegmDAYyzyFNG-lcf5i0B_97U-rd04P3vj8eH4TuCWSESvHYdsFmFIjMGGHyCiWE0wJzDuQaJQCUY6JA3aDbEM4AIKQoEpQeh7FpzSV9b8IXfjahrtKd76chPdVhbLrPDVo5cwn13d9co4_Xl9N2jw_H3dv26YAtEzDivJLMKmMqa5QRpoxb7mpVqcKUBWUgieOOijyeFdhKcJU7ZVwuecEUKxVbo4cld_D99xS79bmffBcrdbSTXMQIiKpsUVnfh-Brpwcf3_c_moCeKeiZgp4p6JlCNODF0HSu9234T_8LnYZdZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301470810</pqid></control><display><type>article</type><title>Optimal Risk-Based Group Testing</title><source>INFORMS PubsOnLine</source><source>EBSCOhost Business Source Complete</source><creator>Aprahamian, Hrayer ; Bish, Douglas R. ; Bish, Ebru K.</creator><creatorcontrib>Aprahamian, Hrayer ; Bish, Douglas R. ; Bish, Ebru K.</creatorcontrib><description>Group testing (i.e., testing multiple subjects simultaneously with a single test) is essential for classifying a large population of subjects as positive or negative for a binary characteristic (e.g., presence of a disease). We study optimal group testing designs under subject-specific risk characteristics and imperfect tests, considering classification accuracy-, efficiency- and equity-based objectives, and characterize important structural properties of optimal testing designs. These properties allow us to model the testing design problems as partitioning problems, develop efficient algorithms, and derive insights on equity versus accuracy trade-off. One of our models reduces to a constrained shortest path problem, for a special case of which we develop a polynomial-time algorithm. We also show that determining an optimal risk-based Dorfman testing scheme that minimizes the expected number of tests is tractable, resolving an open conjecture. We demonstrate the value of optimal risk-based testing schemes with a case study of public health screening. This paper was accepted by Yinyu Ye, optimization.</description><identifier>ISSN: 0025-1909</identifier><identifier>EISSN: 1526-5501</identifier><identifier>DOI: 10.1287/mnsc.2018.3138</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; Classification ; classification errors ; combinatorial optimization ; constrained shortest path ; Dorfman testing ; equity ; group testing ; Health risk assessment ; Management science ; Medical screening ; Public health ; risk-based testing ; Testing</subject><ispartof>Management science, 2019-09, Vol.65 (9), p.4365-4384</ispartof><rights>Copyright Institute for Operations Research and the Management Sciences Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-4d83c9aadca9a7abc375fe9d96ab623081f5f274ca990cd7594f9af4856393b93</citedby><cites>FETCH-LOGICAL-c370t-4d83c9aadca9a7abc375fe9d96ab623081f5f274ca990cd7594f9af4856393b93</cites><orcidid>0000-0002-8750-2366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/mnsc.2018.3138$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,62616</link.rule.ids></links><search><creatorcontrib>Aprahamian, Hrayer</creatorcontrib><creatorcontrib>Bish, Douglas R.</creatorcontrib><creatorcontrib>Bish, Ebru K.</creatorcontrib><title>Optimal Risk-Based Group Testing</title><title>Management science</title><description>Group testing (i.e., testing multiple subjects simultaneously with a single test) is essential for classifying a large population of subjects as positive or negative for a binary characteristic (e.g., presence of a disease). We study optimal group testing designs under subject-specific risk characteristics and imperfect tests, considering classification accuracy-, efficiency- and equity-based objectives, and characterize important structural properties of optimal testing designs. These properties allow us to model the testing design problems as partitioning problems, develop efficient algorithms, and derive insights on equity versus accuracy trade-off. One of our models reduces to a constrained shortest path problem, for a special case of which we develop a polynomial-time algorithm. We also show that determining an optimal risk-based Dorfman testing scheme that minimizes the expected number of tests is tractable, resolving an open conjecture. We demonstrate the value of optimal risk-based testing schemes with a case study of public health screening. This paper was accepted by Yinyu Ye, optimization.</description><subject>Algorithms</subject><subject>Classification</subject><subject>classification errors</subject><subject>combinatorial optimization</subject><subject>constrained shortest path</subject><subject>Dorfman testing</subject><subject>equity</subject><subject>group testing</subject><subject>Health risk assessment</subject><subject>Management science</subject><subject>Medical screening</subject><subject>Public health</subject><subject>risk-based testing</subject><subject>Testing</subject><issn>0025-1909</issn><issn>1526-5501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUx4M4sG5ePRc8p74kTZMcdegmDAYyzyFNG-lcf5i0B_97U-rd04P3vj8eH4TuCWSESvHYdsFmFIjMGGHyCiWE0wJzDuQaJQCUY6JA3aDbEM4AIKQoEpQeh7FpzSV9b8IXfjahrtKd76chPdVhbLrPDVo5cwn13d9co4_Xl9N2jw_H3dv26YAtEzDivJLMKmMqa5QRpoxb7mpVqcKUBWUgieOOijyeFdhKcJU7ZVwuecEUKxVbo4cld_D99xS79bmffBcrdbSTXMQIiKpsUVnfh-Brpwcf3_c_moCeKeiZgp4p6JlCNODF0HSu9234T_8LnYZdZA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Aprahamian, Hrayer</creator><creator>Bish, Douglas R.</creator><creator>Bish, Ebru K.</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0002-8750-2366</orcidid></search><sort><creationdate>20190901</creationdate><title>Optimal Risk-Based Group Testing</title><author>Aprahamian, Hrayer ; Bish, Douglas R. ; Bish, Ebru K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-4d83c9aadca9a7abc375fe9d96ab623081f5f274ca990cd7594f9af4856393b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>classification errors</topic><topic>combinatorial optimization</topic><topic>constrained shortest path</topic><topic>Dorfman testing</topic><topic>equity</topic><topic>group testing</topic><topic>Health risk assessment</topic><topic>Management science</topic><topic>Medical screening</topic><topic>Public health</topic><topic>risk-based testing</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aprahamian, Hrayer</creatorcontrib><creatorcontrib>Bish, Douglas R.</creatorcontrib><creatorcontrib>Bish, Ebru K.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aprahamian, Hrayer</au><au>Bish, Douglas R.</au><au>Bish, Ebru K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Risk-Based Group Testing</atitle><jtitle>Management science</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>65</volume><issue>9</issue><spage>4365</spage><epage>4384</epage><pages>4365-4384</pages><issn>0025-1909</issn><eissn>1526-5501</eissn><abstract>Group testing (i.e., testing multiple subjects simultaneously with a single test) is essential for classifying a large population of subjects as positive or negative for a binary characteristic (e.g., presence of a disease). We study optimal group testing designs under subject-specific risk characteristics and imperfect tests, considering classification accuracy-, efficiency- and equity-based objectives, and characterize important structural properties of optimal testing designs. These properties allow us to model the testing design problems as partitioning problems, develop efficient algorithms, and derive insights on equity versus accuracy trade-off. One of our models reduces to a constrained shortest path problem, for a special case of which we develop a polynomial-time algorithm. We also show that determining an optimal risk-based Dorfman testing scheme that minimizes the expected number of tests is tractable, resolving an open conjecture. We demonstrate the value of optimal risk-based testing schemes with a case study of public health screening. This paper was accepted by Yinyu Ye, optimization.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/mnsc.2018.3138</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8750-2366</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-1909
ispartof Management science, 2019-09, Vol.65 (9), p.4365-4384
issn 0025-1909
1526-5501
language eng
recordid cdi_proquest_journals_2301470810
source INFORMS PubsOnLine; EBSCOhost Business Source Complete
subjects Algorithms
Classification
classification errors
combinatorial optimization
constrained shortest path
Dorfman testing
equity
group testing
Health risk assessment
Management science
Medical screening
Public health
risk-based testing
Testing
title Optimal Risk-Based Group Testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Risk-Based%20Group%20Testing&rft.jtitle=Management%20science&rft.au=Aprahamian,%20Hrayer&rft.date=2019-09-01&rft.volume=65&rft.issue=9&rft.spage=4365&rft.epage=4384&rft.pages=4365-4384&rft.issn=0025-1909&rft.eissn=1526-5501&rft_id=info:doi/10.1287/mnsc.2018.3138&rft_dat=%3Cproquest_cross%3E2301470810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301470810&rft_id=info:pmid/&rfr_iscdi=true