Bayesian nonparametric sparse VAR models

High dimensional vector autoregressive (VAR) models require a large number of parameters to be estimated and may suffer of inferential problems. We propose a new Bayesian nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can improve estimation efficiency and prediction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2019-09, Vol.212 (1), p.97-115
Hauptverfasser: Billio, Monica, Casarin, Roberto, Rossini, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue 1
container_start_page 97
container_title Journal of econometrics
container_volume 212
creator Billio, Monica
Casarin, Roberto
Rossini, Luca
description High dimensional vector autoregressive (VAR) models require a large number of parameters to be estimated and may suffer of inferential problems. We propose a new Bayesian nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can improve estimation efficiency and prediction accuracy. Our hierarchical prior overcomes overparametrization and overfitting issues by clustering the VAR coefficients into groups and by shrinking the coefficients of each group toward a common location. Clustering and shrinking effects induced by the BNP-Lasso prior are well suited for the extraction of causal networks from time series, since they account for some stylized facts in real-world networks, which are sparsity, communities structures and heterogeneity in the edges intensity. In order to fully capture the richness of the data and to achieve a better understanding of financial and macroeconomic risk, it is therefore crucial that the model used to extract network accounts for these stylized facts.
doi_str_mv 10.1016/j.jeconom.2019.04.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2301460792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407619300776</els_id><sourcerecordid>2301460792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-b0bf5cb8671c7863ac4db76cbb0985410c3ba6eae033a977966716c563143dea3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QVjw4mXXySabbE5Si19QEES9hiQ7hSzdTU22gv_elPbuaebwvO8wDyHXFCoKVNz1VY8ujGGoaqCqAl5BXZ-QGW1lXYpWNadkBgx4yUGKc3KRUg8ADW_ZjNw-mF9M3ozFGMatiWbAKXpXpLwnLL4W78UQOtykS3K2NpuEV8c5J59Pjx_Ll3L19vy6XKxKx7maSgt23TjbCkmdbAUzjndWCmctqLbhFByzRqBBYMwoKZXIpHCNYJSzDg2bk5tD7zaG7x2mSfdhF8d8UtcMKBcgVZ2p5kC5GFKKuNbb6AcTfzUFvZeie32UovdSNHCdpeTc_SGXP8Ifj1En53F02PmIbtJd8P80_AGUaGvj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301460792</pqid></control><display><type>article</type><title>Bayesian nonparametric sparse VAR models</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Billio, Monica ; Casarin, Roberto ; Rossini, Luca</creator><creatorcontrib>Billio, Monica ; Casarin, Roberto ; Rossini, Luca</creatorcontrib><description>High dimensional vector autoregressive (VAR) models require a large number of parameters to be estimated and may suffer of inferential problems. We propose a new Bayesian nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can improve estimation efficiency and prediction accuracy. Our hierarchical prior overcomes overparametrization and overfitting issues by clustering the VAR coefficients into groups and by shrinking the coefficients of each group toward a common location. Clustering and shrinking effects induced by the BNP-Lasso prior are well suited for the extraction of causal networks from time series, since they account for some stylized facts in real-world networks, which are sparsity, communities structures and heterogeneity in the edges intensity. In order to fully capture the richness of the data and to achieve a better understanding of financial and macroeconomic risk, it is therefore crucial that the model used to extract network accounts for these stylized facts.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2019.04.022</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bayesian analysis ; Bayesian model selection ; Bayesian nonparametrics ; Clustering ; Connectedness ; Estimating techniques ; Extraction ; Large vector autoregression ; Multilayer networks ; Network communities ; Nonparametric statistics ; Regression analysis ; Shrinkage ; Time series</subject><ispartof>Journal of econometrics, 2019-09, Vol.212 (1), p.97-115</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-b0bf5cb8671c7863ac4db76cbb0985410c3ba6eae033a977966716c563143dea3</citedby><cites>FETCH-LOGICAL-c449t-b0bf5cb8671c7863ac4db76cbb0985410c3ba6eae033a977966716c563143dea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2019.04.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Billio, Monica</creatorcontrib><creatorcontrib>Casarin, Roberto</creatorcontrib><creatorcontrib>Rossini, Luca</creatorcontrib><title>Bayesian nonparametric sparse VAR models</title><title>Journal of econometrics</title><description>High dimensional vector autoregressive (VAR) models require a large number of parameters to be estimated and may suffer of inferential problems. We propose a new Bayesian nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can improve estimation efficiency and prediction accuracy. Our hierarchical prior overcomes overparametrization and overfitting issues by clustering the VAR coefficients into groups and by shrinking the coefficients of each group toward a common location. Clustering and shrinking effects induced by the BNP-Lasso prior are well suited for the extraction of causal networks from time series, since they account for some stylized facts in real-world networks, which are sparsity, communities structures and heterogeneity in the edges intensity. In order to fully capture the richness of the data and to achieve a better understanding of financial and macroeconomic risk, it is therefore crucial that the model used to extract network accounts for these stylized facts.</description><subject>Bayesian analysis</subject><subject>Bayesian model selection</subject><subject>Bayesian nonparametrics</subject><subject>Clustering</subject><subject>Connectedness</subject><subject>Estimating techniques</subject><subject>Extraction</subject><subject>Large vector autoregression</subject><subject>Multilayer networks</subject><subject>Network communities</subject><subject>Nonparametric statistics</subject><subject>Regression analysis</subject><subject>Shrinkage</subject><subject>Time series</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QVjw4mXXySabbE5Si19QEES9hiQ7hSzdTU22gv_elPbuaebwvO8wDyHXFCoKVNz1VY8ujGGoaqCqAl5BXZ-QGW1lXYpWNadkBgx4yUGKc3KRUg8ADW_ZjNw-mF9M3ozFGMatiWbAKXpXpLwnLL4W78UQOtykS3K2NpuEV8c5J59Pjx_Ll3L19vy6XKxKx7maSgt23TjbCkmdbAUzjndWCmctqLbhFByzRqBBYMwoKZXIpHCNYJSzDg2bk5tD7zaG7x2mSfdhF8d8UtcMKBcgVZ2p5kC5GFKKuNbb6AcTfzUFvZeie32UovdSNHCdpeTc_SGXP8Ifj1En53F02PmIbtJd8P80_AGUaGvj</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Billio, Monica</creator><creator>Casarin, Roberto</creator><creator>Rossini, Luca</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20190901</creationdate><title>Bayesian nonparametric sparse VAR models</title><author>Billio, Monica ; Casarin, Roberto ; Rossini, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-b0bf5cb8671c7863ac4db76cbb0985410c3ba6eae033a977966716c563143dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Bayesian model selection</topic><topic>Bayesian nonparametrics</topic><topic>Clustering</topic><topic>Connectedness</topic><topic>Estimating techniques</topic><topic>Extraction</topic><topic>Large vector autoregression</topic><topic>Multilayer networks</topic><topic>Network communities</topic><topic>Nonparametric statistics</topic><topic>Regression analysis</topic><topic>Shrinkage</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Billio, Monica</creatorcontrib><creatorcontrib>Casarin, Roberto</creatorcontrib><creatorcontrib>Rossini, Luca</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Billio, Monica</au><au>Casarin, Roberto</au><au>Rossini, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian nonparametric sparse VAR models</atitle><jtitle>Journal of econometrics</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>212</volume><issue>1</issue><spage>97</spage><epage>115</epage><pages>97-115</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>High dimensional vector autoregressive (VAR) models require a large number of parameters to be estimated and may suffer of inferential problems. We propose a new Bayesian nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can improve estimation efficiency and prediction accuracy. Our hierarchical prior overcomes overparametrization and overfitting issues by clustering the VAR coefficients into groups and by shrinking the coefficients of each group toward a common location. Clustering and shrinking effects induced by the BNP-Lasso prior are well suited for the extraction of causal networks from time series, since they account for some stylized facts in real-world networks, which are sparsity, communities structures and heterogeneity in the edges intensity. In order to fully capture the richness of the data and to achieve a better understanding of financial and macroeconomic risk, it is therefore crucial that the model used to extract network accounts for these stylized facts.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2019.04.022</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2019-09, Vol.212 (1), p.97-115
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_journals_2301460792
source Elsevier ScienceDirect Journals Complete
subjects Bayesian analysis
Bayesian model selection
Bayesian nonparametrics
Clustering
Connectedness
Estimating techniques
Extraction
Large vector autoregression
Multilayer networks
Network communities
Nonparametric statistics
Regression analysis
Shrinkage
Time series
title Bayesian nonparametric sparse VAR models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20nonparametric%20sparse%20VAR%20models&rft.jtitle=Journal%20of%20econometrics&rft.au=Billio,%20Monica&rft.date=2019-09-01&rft.volume=212&rft.issue=1&rft.spage=97&rft.epage=115&rft.pages=97-115&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2019.04.022&rft_dat=%3Cproquest_cross%3E2301460792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301460792&rft_id=info:pmid/&rft_els_id=S0304407619300776&rfr_iscdi=true