Bayesian nonparametric sparse VAR models
High dimensional vector autoregressive (VAR) models require a large number of parameters to be estimated and may suffer of inferential problems. We propose a new Bayesian nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can improve estimation efficiency and prediction...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2019-09, Vol.212 (1), p.97-115 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115 |
---|---|
container_issue | 1 |
container_start_page | 97 |
container_title | Journal of econometrics |
container_volume | 212 |
creator | Billio, Monica Casarin, Roberto Rossini, Luca |
description | High dimensional vector autoregressive (VAR) models require a large number of parameters to be estimated and may suffer of inferential problems. We propose a new Bayesian nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can improve estimation efficiency and prediction accuracy. Our hierarchical prior overcomes overparametrization and overfitting issues by clustering the VAR coefficients into groups and by shrinking the coefficients of each group toward a common location. Clustering and shrinking effects induced by the BNP-Lasso prior are well suited for the extraction of causal networks from time series, since they account for some stylized facts in real-world networks, which are sparsity, communities structures and heterogeneity in the edges intensity. In order to fully capture the richness of the data and to achieve a better understanding of financial and macroeconomic risk, it is therefore crucial that the model used to extract network accounts for these stylized facts. |
doi_str_mv | 10.1016/j.jeconom.2019.04.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2301460792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407619300776</els_id><sourcerecordid>2301460792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-b0bf5cb8671c7863ac4db76cbb0985410c3ba6eae033a977966716c563143dea3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QVjw4mXXySabbE5Si19QEES9hiQ7hSzdTU22gv_elPbuaebwvO8wDyHXFCoKVNz1VY8ujGGoaqCqAl5BXZ-QGW1lXYpWNadkBgx4yUGKc3KRUg8ADW_ZjNw-mF9M3ozFGMatiWbAKXpXpLwnLL4W78UQOtykS3K2NpuEV8c5J59Pjx_Ll3L19vy6XKxKx7maSgt23TjbCkmdbAUzjndWCmctqLbhFByzRqBBYMwoKZXIpHCNYJSzDg2bk5tD7zaG7x2mSfdhF8d8UtcMKBcgVZ2p5kC5GFKKuNbb6AcTfzUFvZeie32UovdSNHCdpeTc_SGXP8Ifj1En53F02PmIbtJd8P80_AGUaGvj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301460792</pqid></control><display><type>article</type><title>Bayesian nonparametric sparse VAR models</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Billio, Monica ; Casarin, Roberto ; Rossini, Luca</creator><creatorcontrib>Billio, Monica ; Casarin, Roberto ; Rossini, Luca</creatorcontrib><description>High dimensional vector autoregressive (VAR) models require a large number of parameters to be estimated and may suffer of inferential problems. We propose a new Bayesian nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can improve estimation efficiency and prediction accuracy. Our hierarchical prior overcomes overparametrization and overfitting issues by clustering the VAR coefficients into groups and by shrinking the coefficients of each group toward a common location. Clustering and shrinking effects induced by the BNP-Lasso prior are well suited for the extraction of causal networks from time series, since they account for some stylized facts in real-world networks, which are sparsity, communities structures and heterogeneity in the edges intensity. In order to fully capture the richness of the data and to achieve a better understanding of financial and macroeconomic risk, it is therefore crucial that the model used to extract network accounts for these stylized facts.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2019.04.022</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bayesian analysis ; Bayesian model selection ; Bayesian nonparametrics ; Clustering ; Connectedness ; Estimating techniques ; Extraction ; Large vector autoregression ; Multilayer networks ; Network communities ; Nonparametric statistics ; Regression analysis ; Shrinkage ; Time series</subject><ispartof>Journal of econometrics, 2019-09, Vol.212 (1), p.97-115</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-b0bf5cb8671c7863ac4db76cbb0985410c3ba6eae033a977966716c563143dea3</citedby><cites>FETCH-LOGICAL-c449t-b0bf5cb8671c7863ac4db76cbb0985410c3ba6eae033a977966716c563143dea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2019.04.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Billio, Monica</creatorcontrib><creatorcontrib>Casarin, Roberto</creatorcontrib><creatorcontrib>Rossini, Luca</creatorcontrib><title>Bayesian nonparametric sparse VAR models</title><title>Journal of econometrics</title><description>High dimensional vector autoregressive (VAR) models require a large number of parameters to be estimated and may suffer of inferential problems. We propose a new Bayesian nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can improve estimation efficiency and prediction accuracy. Our hierarchical prior overcomes overparametrization and overfitting issues by clustering the VAR coefficients into groups and by shrinking the coefficients of each group toward a common location. Clustering and shrinking effects induced by the BNP-Lasso prior are well suited for the extraction of causal networks from time series, since they account for some stylized facts in real-world networks, which are sparsity, communities structures and heterogeneity in the edges intensity. In order to fully capture the richness of the data and to achieve a better understanding of financial and macroeconomic risk, it is therefore crucial that the model used to extract network accounts for these stylized facts.</description><subject>Bayesian analysis</subject><subject>Bayesian model selection</subject><subject>Bayesian nonparametrics</subject><subject>Clustering</subject><subject>Connectedness</subject><subject>Estimating techniques</subject><subject>Extraction</subject><subject>Large vector autoregression</subject><subject>Multilayer networks</subject><subject>Network communities</subject><subject>Nonparametric statistics</subject><subject>Regression analysis</subject><subject>Shrinkage</subject><subject>Time series</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QVjw4mXXySabbE5Si19QEES9hiQ7hSzdTU22gv_elPbuaebwvO8wDyHXFCoKVNz1VY8ujGGoaqCqAl5BXZ-QGW1lXYpWNadkBgx4yUGKc3KRUg8ADW_ZjNw-mF9M3ozFGMatiWbAKXpXpLwnLL4W78UQOtykS3K2NpuEV8c5J59Pjx_Ll3L19vy6XKxKx7maSgt23TjbCkmdbAUzjndWCmctqLbhFByzRqBBYMwoKZXIpHCNYJSzDg2bk5tD7zaG7x2mSfdhF8d8UtcMKBcgVZ2p5kC5GFKKuNbb6AcTfzUFvZeie32UovdSNHCdpeTc_SGXP8Ifj1En53F02PmIbtJd8P80_AGUaGvj</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Billio, Monica</creator><creator>Casarin, Roberto</creator><creator>Rossini, Luca</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20190901</creationdate><title>Bayesian nonparametric sparse VAR models</title><author>Billio, Monica ; Casarin, Roberto ; Rossini, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-b0bf5cb8671c7863ac4db76cbb0985410c3ba6eae033a977966716c563143dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Bayesian model selection</topic><topic>Bayesian nonparametrics</topic><topic>Clustering</topic><topic>Connectedness</topic><topic>Estimating techniques</topic><topic>Extraction</topic><topic>Large vector autoregression</topic><topic>Multilayer networks</topic><topic>Network communities</topic><topic>Nonparametric statistics</topic><topic>Regression analysis</topic><topic>Shrinkage</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Billio, Monica</creatorcontrib><creatorcontrib>Casarin, Roberto</creatorcontrib><creatorcontrib>Rossini, Luca</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Billio, Monica</au><au>Casarin, Roberto</au><au>Rossini, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian nonparametric sparse VAR models</atitle><jtitle>Journal of econometrics</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>212</volume><issue>1</issue><spage>97</spage><epage>115</epage><pages>97-115</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>High dimensional vector autoregressive (VAR) models require a large number of parameters to be estimated and may suffer of inferential problems. We propose a new Bayesian nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can improve estimation efficiency and prediction accuracy. Our hierarchical prior overcomes overparametrization and overfitting issues by clustering the VAR coefficients into groups and by shrinking the coefficients of each group toward a common location. Clustering and shrinking effects induced by the BNP-Lasso prior are well suited for the extraction of causal networks from time series, since they account for some stylized facts in real-world networks, which are sparsity, communities structures and heterogeneity in the edges intensity. In order to fully capture the richness of the data and to achieve a better understanding of financial and macroeconomic risk, it is therefore crucial that the model used to extract network accounts for these stylized facts.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2019.04.022</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2019-09, Vol.212 (1), p.97-115 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_journals_2301460792 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Bayesian analysis Bayesian model selection Bayesian nonparametrics Clustering Connectedness Estimating techniques Extraction Large vector autoregression Multilayer networks Network communities Nonparametric statistics Regression analysis Shrinkage Time series |
title | Bayesian nonparametric sparse VAR models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20nonparametric%20sparse%20VAR%20models&rft.jtitle=Journal%20of%20econometrics&rft.au=Billio,%20Monica&rft.date=2019-09-01&rft.volume=212&rft.issue=1&rft.spage=97&rft.epage=115&rft.pages=97-115&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2019.04.022&rft_dat=%3Cproquest_cross%3E2301460792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301460792&rft_id=info:pmid/&rft_els_id=S0304407619300776&rfr_iscdi=true |