Ethological data mining: an automata-based approach to extract behavioral units and rules
We propose an efficient automata-based approach to extract behavioral units and rules from continuous sequential data of animal behavior. By introducing novel extensions, we integrate two elemental methods—the N -gram model and Angluin’s machine learning algorithm into an ethological data mining fra...
Gespeichert in:
Veröffentlicht in: | Data mining and knowledge discovery 2009-06, Vol.18 (3), p.446-471 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 471 |
---|---|
container_issue | 3 |
container_start_page | 446 |
container_title | Data mining and knowledge discovery |
container_volume | 18 |
creator | Kakishita, Yasuki Sasahara, Kazutoshi Nishino, Tetsuro Takahasi, Miki Okanoya, Kazuo |
description | We propose an efficient automata-based approach to extract behavioral units and rules from continuous sequential data of animal behavior. By introducing novel extensions, we integrate two elemental methods—the
N
-gram model and Angluin’s machine learning algorithm into an ethological data mining framework. This allows us to obtain the minimized automaton-representation of behavioral rules that accept (or generate) the smallest set of possible behavioral patterns from sequential data of animal behavior. With this method, we demonstrate how the ethological data mining works using real birdsong data; we use the Bengalese finch song and perform experimental evaluations of this method using artificial birdsong data generated by a computer program. These results suggest that our ethological data mining works effectively even for noisy behavioral data by appropriately setting the parameters that we introduce. In addition, we demonstrate a case study using the Bengalese finch song, showing that our method successfully grasps the core structure of the singing behavior such as loops and branches. |
doi_str_mv | 10.1007/s10618-008-0122-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_230127228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677218821</sourcerecordid><originalsourceid>FETCH-LOGICAL-p155t-d279b06ebcffc03135b2714d35f545413d87641ba738ba6a264d9f3cec514d4e3</originalsourceid><addsrcrecordid>eNpFkEtLAzEQx4MoWKsfwFvwHs3ksdl6k1IfUPCioKeQ17ZbtrtrkhU_vikVPAwzDL95_P8IXQO9BUrVXQJaQU0oLQGMEThBM5CKEyWrj9NS81oQWQM9Rxcp7SilknE6Q5-rvB26YdM602FvssH7tm_7zT02PTZTHvalR6xJwWMzjnEwbovzgMNPjsZlbMPWfLdDLNNT3-ZUxjyOUxfSJTprTJfC1V-eo_fH1dvymaxfn16WD2sygpSZeKYWllbBuqZxlAOXlikQnstGCimA-1pVAqxRvLamMqwSftFwF5wslAh8jm6Oe8tzX1NIWe-GKfblpC4KgSnG6gKxI5TGWNSF-A8B1QcH9dFBXRzUBwc18F9WpGQ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230127228</pqid></control><display><type>article</type><title>Ethological data mining: an automata-based approach to extract behavioral units and rules</title><source>SpringerNature Journals</source><creator>Kakishita, Yasuki ; Sasahara, Kazutoshi ; Nishino, Tetsuro ; Takahasi, Miki ; Okanoya, Kazuo</creator><creatorcontrib>Kakishita, Yasuki ; Sasahara, Kazutoshi ; Nishino, Tetsuro ; Takahasi, Miki ; Okanoya, Kazuo</creatorcontrib><description>We propose an efficient automata-based approach to extract behavioral units and rules from continuous sequential data of animal behavior. By introducing novel extensions, we integrate two elemental methods—the
N
-gram model and Angluin’s machine learning algorithm into an ethological data mining framework. This allows us to obtain the minimized automaton-representation of behavioral rules that accept (or generate) the smallest set of possible behavioral patterns from sequential data of animal behavior. With this method, we demonstrate how the ethological data mining works using real birdsong data; we use the Bengalese finch song and perform experimental evaluations of this method using artificial birdsong data generated by a computer program. These results suggest that our ethological data mining works effectively even for noisy behavioral data by appropriately setting the parameters that we introduce. In addition, we demonstrate a case study using the Bengalese finch song, showing that our method successfully grasps the core structure of the singing behavior such as loops and branches.</description><identifier>ISSN: 1384-5810</identifier><identifier>EISSN: 1573-756X</identifier><identifier>DOI: 10.1007/s10618-008-0122-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Animal behavior ; Animal communication ; Artificial Intelligence ; Chemistry and Earth Sciences ; Computer Science ; Data mining ; Data Mining and Knowledge Discovery ; Embedded systems ; Hypotheses ; Information Storage and Retrieval ; Machine learning ; Natural language processing ; Physics ; Statistics for Engineering ; Syntax</subject><ispartof>Data mining and knowledge discovery, 2009-06, Vol.18 (3), p.446-471</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p155t-d279b06ebcffc03135b2714d35f545413d87641ba738ba6a264d9f3cec514d4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10618-008-0122-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10618-008-0122-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Kakishita, Yasuki</creatorcontrib><creatorcontrib>Sasahara, Kazutoshi</creatorcontrib><creatorcontrib>Nishino, Tetsuro</creatorcontrib><creatorcontrib>Takahasi, Miki</creatorcontrib><creatorcontrib>Okanoya, Kazuo</creatorcontrib><title>Ethological data mining: an automata-based approach to extract behavioral units and rules</title><title>Data mining and knowledge discovery</title><addtitle>Data Min Knowl Disc</addtitle><description>We propose an efficient automata-based approach to extract behavioral units and rules from continuous sequential data of animal behavior. By introducing novel extensions, we integrate two elemental methods—the
N
-gram model and Angluin’s machine learning algorithm into an ethological data mining framework. This allows us to obtain the minimized automaton-representation of behavioral rules that accept (or generate) the smallest set of possible behavioral patterns from sequential data of animal behavior. With this method, we demonstrate how the ethological data mining works using real birdsong data; we use the Bengalese finch song and perform experimental evaluations of this method using artificial birdsong data generated by a computer program. These results suggest that our ethological data mining works effectively even for noisy behavioral data by appropriately setting the parameters that we introduce. In addition, we demonstrate a case study using the Bengalese finch song, showing that our method successfully grasps the core structure of the singing behavior such as loops and branches.</description><subject>Animal behavior</subject><subject>Animal communication</subject><subject>Artificial Intelligence</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Embedded systems</subject><subject>Hypotheses</subject><subject>Information Storage and Retrieval</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Physics</subject><subject>Statistics for Engineering</subject><subject>Syntax</subject><issn>1384-5810</issn><issn>1573-756X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkEtLAzEQx4MoWKsfwFvwHs3ksdl6k1IfUPCioKeQ17ZbtrtrkhU_vikVPAwzDL95_P8IXQO9BUrVXQJaQU0oLQGMEThBM5CKEyWrj9NS81oQWQM9Rxcp7SilknE6Q5-rvB26YdM602FvssH7tm_7zT02PTZTHvalR6xJwWMzjnEwbovzgMNPjsZlbMPWfLdDLNNT3-ZUxjyOUxfSJTprTJfC1V-eo_fH1dvymaxfn16WD2sygpSZeKYWllbBuqZxlAOXlikQnstGCimA-1pVAqxRvLamMqwSftFwF5wslAh8jm6Oe8tzX1NIWe-GKfblpC4KgSnG6gKxI5TGWNSF-A8B1QcH9dFBXRzUBwc18F9WpGQ4</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Kakishita, Yasuki</creator><creator>Sasahara, Kazutoshi</creator><creator>Nishino, Tetsuro</creator><creator>Takahasi, Miki</creator><creator>Okanoya, Kazuo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20090601</creationdate><title>Ethological data mining: an automata-based approach to extract behavioral units and rules</title><author>Kakishita, Yasuki ; Sasahara, Kazutoshi ; Nishino, Tetsuro ; Takahasi, Miki ; Okanoya, Kazuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p155t-d279b06ebcffc03135b2714d35f545413d87641ba738ba6a264d9f3cec514d4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animal behavior</topic><topic>Animal communication</topic><topic>Artificial Intelligence</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Embedded systems</topic><topic>Hypotheses</topic><topic>Information Storage and Retrieval</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Physics</topic><topic>Statistics for Engineering</topic><topic>Syntax</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kakishita, Yasuki</creatorcontrib><creatorcontrib>Sasahara, Kazutoshi</creatorcontrib><creatorcontrib>Nishino, Tetsuro</creatorcontrib><creatorcontrib>Takahasi, Miki</creatorcontrib><creatorcontrib>Okanoya, Kazuo</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kakishita, Yasuki</au><au>Sasahara, Kazutoshi</au><au>Nishino, Tetsuro</au><au>Takahasi, Miki</au><au>Okanoya, Kazuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ethological data mining: an automata-based approach to extract behavioral units and rules</atitle><jtitle>Data mining and knowledge discovery</jtitle><stitle>Data Min Knowl Disc</stitle><date>2009-06-01</date><risdate>2009</risdate><volume>18</volume><issue>3</issue><spage>446</spage><epage>471</epage><pages>446-471</pages><issn>1384-5810</issn><eissn>1573-756X</eissn><abstract>We propose an efficient automata-based approach to extract behavioral units and rules from continuous sequential data of animal behavior. By introducing novel extensions, we integrate two elemental methods—the
N
-gram model and Angluin’s machine learning algorithm into an ethological data mining framework. This allows us to obtain the minimized automaton-representation of behavioral rules that accept (or generate) the smallest set of possible behavioral patterns from sequential data of animal behavior. With this method, we demonstrate how the ethological data mining works using real birdsong data; we use the Bengalese finch song and perform experimental evaluations of this method using artificial birdsong data generated by a computer program. These results suggest that our ethological data mining works effectively even for noisy behavioral data by appropriately setting the parameters that we introduce. In addition, we demonstrate a case study using the Bengalese finch song, showing that our method successfully grasps the core structure of the singing behavior such as loops and branches.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10618-008-0122-1</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1384-5810 |
ispartof | Data mining and knowledge discovery, 2009-06, Vol.18 (3), p.446-471 |
issn | 1384-5810 1573-756X |
language | eng |
recordid | cdi_proquest_journals_230127228 |
source | SpringerNature Journals |
subjects | Animal behavior Animal communication Artificial Intelligence Chemistry and Earth Sciences Computer Science Data mining Data Mining and Knowledge Discovery Embedded systems Hypotheses Information Storage and Retrieval Machine learning Natural language processing Physics Statistics for Engineering Syntax |
title | Ethological data mining: an automata-based approach to extract behavioral units and rules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ethological%20data%20mining:%20an%20automata-based%20approach%20to%20extract%20behavioral%20units%20and%20rules&rft.jtitle=Data%20mining%20and%20knowledge%20discovery&rft.au=Kakishita,%20Yasuki&rft.date=2009-06-01&rft.volume=18&rft.issue=3&rft.spage=446&rft.epage=471&rft.pages=446-471&rft.issn=1384-5810&rft.eissn=1573-756X&rft_id=info:doi/10.1007/s10618-008-0122-1&rft_dat=%3Cproquest_sprin%3E1677218821%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230127228&rft_id=info:pmid/&rfr_iscdi=true |