Inverse Problem of Travel Time Difference Functions on a Compact Riemannian Manifold with Boundary

We show that the travel time difference functions, between common interior points and pairs of points on the boundary, determine a compact Riemannian manifold with smooth boundary up to Riemannian isometry if the boundary satisfies a certain visibility condition. This corresponds with the inverse mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2019-12, Vol.29 (4), p.3308-3327
Hauptverfasser: de Hoop, Maarten V., Saksala, Teemu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3327
container_issue 4
container_start_page 3308
container_title The Journal of Geometric Analysis
container_volume 29
creator de Hoop, Maarten V.
Saksala, Teemu
description We show that the travel time difference functions, between common interior points and pairs of points on the boundary, determine a compact Riemannian manifold with smooth boundary up to Riemannian isometry if the boundary satisfies a certain visibility condition. This corresponds with the inverse microseismicity problem. In the proof of this result, we also construct an explicit smooth atlas from the travel time difference functions.
doi_str_mv 10.1007/s12220-018-00111-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2300965946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707339892</galeid><sourcerecordid>A707339892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-740538602174ec1331b1d9efc4fe8b042e2967952c29d4524ee6233496ada1163</originalsourceid><addsrcrecordid>eNp9kE1LJDEQhhtxwY_1D3gKeG6tfHS6c9TRcQVFWWbBW8ikKxrpTsakx2X__UZb8CZ1qA_epyp5q-qYwikFaM8yZYxBDbSrASilNexU-7RpVGnZ426poYFaKib3qoOcXwCE5KLdr9Y34Q1TRvKQ4nrAkURHVsm84UBWfkRy6Z3DhMEiWW6DnXwMmcRADFnEcWPsRH57HE0I3gRyZ4J3cejJXz89k4u4Db1J_35WP5wZMh595sPqz_JqtfhV395f3yzOb2vLm26qWwEN7yQw2gq0lHO6pr1CZ4XDbg2CIVOyVQ2zTPWiYQJRMs6FkqY3lEp-WJ3Mezcpvm4xT_olblMoJzXjAEo2SryrTmfVkxlQ--DilIwt0ePobQzofJmft9ByrjrFCsBmwKaYc0KnN8mP5V-agn43X8_m62K-_jBfQ4H4DOUiDk-Yvt7yDfUf7k2FhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300965946</pqid></control><display><type>article</type><title>Inverse Problem of Travel Time Difference Functions on a Compact Riemannian Manifold with Boundary</title><source>SpringerLink Journals - AutoHoldings</source><creator>de Hoop, Maarten V. ; Saksala, Teemu</creator><creatorcontrib>de Hoop, Maarten V. ; Saksala, Teemu</creatorcontrib><description>We show that the travel time difference functions, between common interior points and pairs of points on the boundary, determine a compact Riemannian manifold with smooth boundary up to Riemannian isometry if the boundary satisfies a certain visibility condition. This corresponds with the inverse microseismicity problem. In the proof of this result, we also construct an explicit smooth atlas from the travel time difference functions.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-018-00111-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Cybernetics ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Inverse problems ; Mathematics ; Mathematics and Statistics ; Riemann manifold ; Smooth boundaries ; Travel time ; Visibility</subject><ispartof>The Journal of Geometric Analysis, 2019-12, Vol.29 (4), p.3308-3327</ispartof><rights>Mathematica Josephina, Inc. 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>2018© Mathematica Josephina, Inc. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-740538602174ec1331b1d9efc4fe8b042e2967952c29d4524ee6233496ada1163</citedby><cites>FETCH-LOGICAL-c358t-740538602174ec1331b1d9efc4fe8b042e2967952c29d4524ee6233496ada1163</cites><orcidid>0000-0002-3785-9623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-018-00111-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-018-00111-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>de Hoop, Maarten V.</creatorcontrib><creatorcontrib>Saksala, Teemu</creatorcontrib><title>Inverse Problem of Travel Time Difference Functions on a Compact Riemannian Manifold with Boundary</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>We show that the travel time difference functions, between common interior points and pairs of points on the boundary, determine a compact Riemannian manifold with smooth boundary up to Riemannian isometry if the boundary satisfies a certain visibility condition. This corresponds with the inverse microseismicity problem. In the proof of this result, we also construct an explicit smooth atlas from the travel time difference functions.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Cybernetics</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Inverse problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Riemann manifold</subject><subject>Smooth boundaries</subject><subject>Travel time</subject><subject>Visibility</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LJDEQhhtxwY_1D3gKeG6tfHS6c9TRcQVFWWbBW8ikKxrpTsakx2X__UZb8CZ1qA_epyp5q-qYwikFaM8yZYxBDbSrASilNexU-7RpVGnZ426poYFaKib3qoOcXwCE5KLdr9Y34Q1TRvKQ4nrAkURHVsm84UBWfkRy6Z3DhMEiWW6DnXwMmcRADFnEcWPsRH57HE0I3gRyZ4J3cejJXz89k4u4Db1J_35WP5wZMh595sPqz_JqtfhV395f3yzOb2vLm26qWwEN7yQw2gq0lHO6pr1CZ4XDbg2CIVOyVQ2zTPWiYQJRMs6FkqY3lEp-WJ3Mezcpvm4xT_olblMoJzXjAEo2SryrTmfVkxlQ--DilIwt0ePobQzofJmft9ByrjrFCsBmwKaYc0KnN8mP5V-agn43X8_m62K-_jBfQ4H4DOUiDk-Yvt7yDfUf7k2FhQ</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>de Hoop, Maarten V.</creator><creator>Saksala, Teemu</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0002-3785-9623</orcidid></search><sort><creationdate>20191201</creationdate><title>Inverse Problem of Travel Time Difference Functions on a Compact Riemannian Manifold with Boundary</title><author>de Hoop, Maarten V. ; Saksala, Teemu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-740538602174ec1331b1d9efc4fe8b042e2967952c29d4524ee6233496ada1163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Cybernetics</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Inverse problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Riemann manifold</topic><topic>Smooth boundaries</topic><topic>Travel time</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Hoop, Maarten V.</creatorcontrib><creatorcontrib>Saksala, Teemu</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Hoop, Maarten V.</au><au>Saksala, Teemu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Problem of Travel Time Difference Functions on a Compact Riemannian Manifold with Boundary</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>29</volume><issue>4</issue><spage>3308</spage><epage>3327</epage><pages>3308-3327</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We show that the travel time difference functions, between common interior points and pairs of points on the boundary, determine a compact Riemannian manifold with smooth boundary up to Riemannian isometry if the boundary satisfies a certain visibility condition. This corresponds with the inverse microseismicity problem. In the proof of this result, we also construct an explicit smooth atlas from the travel time difference functions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-018-00111-0</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3785-9623</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2019-12, Vol.29 (4), p.3308-3327
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2300965946
source SpringerLink Journals - AutoHoldings
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Cybernetics
Differential Geometry
Dynamical Systems and Ergodic Theory
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Inverse problems
Mathematics
Mathematics and Statistics
Riemann manifold
Smooth boundaries
Travel time
Visibility
title Inverse Problem of Travel Time Difference Functions on a Compact Riemannian Manifold with Boundary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Problem%20of%20Travel%20Time%20Difference%20Functions%20on%20a%20Compact%20Riemannian%20Manifold%20with%20Boundary&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=de%20Hoop,%20Maarten%20V.&rft.date=2019-12-01&rft.volume=29&rft.issue=4&rft.spage=3308&rft.epage=3327&rft.pages=3308-3327&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-018-00111-0&rft_dat=%3Cgale_proqu%3EA707339892%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300965946&rft_id=info:pmid/&rft_galeid=A707339892&rfr_iscdi=true