Inverse Problem of Travel Time Difference Functions on a Compact Riemannian Manifold with Boundary
We show that the travel time difference functions, between common interior points and pairs of points on the boundary, determine a compact Riemannian manifold with smooth boundary up to Riemannian isometry if the boundary satisfies a certain visibility condition. This corresponds with the inverse mi...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2019-12, Vol.29 (4), p.3308-3327 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3327 |
---|---|
container_issue | 4 |
container_start_page | 3308 |
container_title | The Journal of Geometric Analysis |
container_volume | 29 |
creator | de Hoop, Maarten V. Saksala, Teemu |
description | We show that the travel time difference functions, between common interior points and pairs of points on the boundary, determine a compact Riemannian manifold with smooth boundary up to Riemannian isometry if the boundary satisfies a certain visibility condition. This corresponds with the inverse microseismicity problem. In the proof of this result, we also construct an explicit smooth atlas from the travel time difference functions. |
doi_str_mv | 10.1007/s12220-018-00111-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2300965946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707339892</galeid><sourcerecordid>A707339892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-740538602174ec1331b1d9efc4fe8b042e2967952c29d4524ee6233496ada1163</originalsourceid><addsrcrecordid>eNp9kE1LJDEQhhtxwY_1D3gKeG6tfHS6c9TRcQVFWWbBW8ikKxrpTsakx2X__UZb8CZ1qA_epyp5q-qYwikFaM8yZYxBDbSrASilNexU-7RpVGnZ426poYFaKib3qoOcXwCE5KLdr9Y34Q1TRvKQ4nrAkURHVsm84UBWfkRy6Z3DhMEiWW6DnXwMmcRADFnEcWPsRH57HE0I3gRyZ4J3cejJXz89k4u4Db1J_35WP5wZMh595sPqz_JqtfhV395f3yzOb2vLm26qWwEN7yQw2gq0lHO6pr1CZ4XDbg2CIVOyVQ2zTPWiYQJRMs6FkqY3lEp-WJ3Mezcpvm4xT_olblMoJzXjAEo2SryrTmfVkxlQ--DilIwt0ePobQzofJmft9ByrjrFCsBmwKaYc0KnN8mP5V-agn43X8_m62K-_jBfQ4H4DOUiDk-Yvt7yDfUf7k2FhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300965946</pqid></control><display><type>article</type><title>Inverse Problem of Travel Time Difference Functions on a Compact Riemannian Manifold with Boundary</title><source>SpringerLink Journals - AutoHoldings</source><creator>de Hoop, Maarten V. ; Saksala, Teemu</creator><creatorcontrib>de Hoop, Maarten V. ; Saksala, Teemu</creatorcontrib><description>We show that the travel time difference functions, between common interior points and pairs of points on the boundary, determine a compact Riemannian manifold with smooth boundary up to Riemannian isometry if the boundary satisfies a certain visibility condition. This corresponds with the inverse microseismicity problem. In the proof of this result, we also construct an explicit smooth atlas from the travel time difference functions.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-018-00111-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Cybernetics ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Inverse problems ; Mathematics ; Mathematics and Statistics ; Riemann manifold ; Smooth boundaries ; Travel time ; Visibility</subject><ispartof>The Journal of Geometric Analysis, 2019-12, Vol.29 (4), p.3308-3327</ispartof><rights>Mathematica Josephina, Inc. 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>2018© Mathematica Josephina, Inc. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-740538602174ec1331b1d9efc4fe8b042e2967952c29d4524ee6233496ada1163</citedby><cites>FETCH-LOGICAL-c358t-740538602174ec1331b1d9efc4fe8b042e2967952c29d4524ee6233496ada1163</cites><orcidid>0000-0002-3785-9623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-018-00111-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-018-00111-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>de Hoop, Maarten V.</creatorcontrib><creatorcontrib>Saksala, Teemu</creatorcontrib><title>Inverse Problem of Travel Time Difference Functions on a Compact Riemannian Manifold with Boundary</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>We show that the travel time difference functions, between common interior points and pairs of points on the boundary, determine a compact Riemannian manifold with smooth boundary up to Riemannian isometry if the boundary satisfies a certain visibility condition. This corresponds with the inverse microseismicity problem. In the proof of this result, we also construct an explicit smooth atlas from the travel time difference functions.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Cybernetics</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Inverse problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Riemann manifold</subject><subject>Smooth boundaries</subject><subject>Travel time</subject><subject>Visibility</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LJDEQhhtxwY_1D3gKeG6tfHS6c9TRcQVFWWbBW8ikKxrpTsakx2X__UZb8CZ1qA_epyp5q-qYwikFaM8yZYxBDbSrASilNexU-7RpVGnZ426poYFaKib3qoOcXwCE5KLdr9Y34Q1TRvKQ4nrAkURHVsm84UBWfkRy6Z3DhMEiWW6DnXwMmcRADFnEcWPsRH57HE0I3gRyZ4J3cejJXz89k4u4Db1J_35WP5wZMh595sPqz_JqtfhV395f3yzOb2vLm26qWwEN7yQw2gq0lHO6pr1CZ4XDbg2CIVOyVQ2zTPWiYQJRMs6FkqY3lEp-WJ3Mezcpvm4xT_olblMoJzXjAEo2SryrTmfVkxlQ--DilIwt0ePobQzofJmft9ByrjrFCsBmwKaYc0KnN8mP5V-agn43X8_m62K-_jBfQ4H4DOUiDk-Yvt7yDfUf7k2FhQ</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>de Hoop, Maarten V.</creator><creator>Saksala, Teemu</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0002-3785-9623</orcidid></search><sort><creationdate>20191201</creationdate><title>Inverse Problem of Travel Time Difference Functions on a Compact Riemannian Manifold with Boundary</title><author>de Hoop, Maarten V. ; Saksala, Teemu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-740538602174ec1331b1d9efc4fe8b042e2967952c29d4524ee6233496ada1163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Cybernetics</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Inverse problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Riemann manifold</topic><topic>Smooth boundaries</topic><topic>Travel time</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Hoop, Maarten V.</creatorcontrib><creatorcontrib>Saksala, Teemu</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Hoop, Maarten V.</au><au>Saksala, Teemu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Problem of Travel Time Difference Functions on a Compact Riemannian Manifold with Boundary</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>29</volume><issue>4</issue><spage>3308</spage><epage>3327</epage><pages>3308-3327</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We show that the travel time difference functions, between common interior points and pairs of points on the boundary, determine a compact Riemannian manifold with smooth boundary up to Riemannian isometry if the boundary satisfies a certain visibility condition. This corresponds with the inverse microseismicity problem. In the proof of this result, we also construct an explicit smooth atlas from the travel time difference functions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-018-00111-0</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3785-9623</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of Geometric Analysis, 2019-12, Vol.29 (4), p.3308-3327 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_2300965946 |
source | SpringerLink Journals - AutoHoldings |
subjects | Abstract Harmonic Analysis Convex and Discrete Geometry Cybernetics Differential Geometry Dynamical Systems and Ergodic Theory Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Inverse problems Mathematics Mathematics and Statistics Riemann manifold Smooth boundaries Travel time Visibility |
title | Inverse Problem of Travel Time Difference Functions on a Compact Riemannian Manifold with Boundary |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Problem%20of%20Travel%20Time%20Difference%20Functions%20on%20a%20Compact%20Riemannian%20Manifold%20with%20Boundary&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=de%20Hoop,%20Maarten%20V.&rft.date=2019-12-01&rft.volume=29&rft.issue=4&rft.spage=3308&rft.epage=3327&rft.pages=3308-3327&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-018-00111-0&rft_dat=%3Cgale_proqu%3EA707339892%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300965946&rft_id=info:pmid/&rft_galeid=A707339892&rfr_iscdi=true |