Optimal Littlewood-Offord Inequalities in Groups

Consider the weighted sum [[summation].sup.n.sub.i=1] [a.sub.i][[epsilon].sub.i], where [([a.sub.i]).sup.n.sub.i=1] is a sequence of non-zero real numbers and [([[epsilon].sub.i]).sup.n.sub.i=1]--a sequence of independent Rademacher random variables, that is, P([[epsilon].sub.i[+ or -]1]) = -1. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorica (Budapest. 1981) 2019-08, Vol.39 (4), p.911-921
Hauptverfasser: Juskevicius, Tomas, Semetulskis, Grazvydas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 921
container_issue 4
container_start_page 911
container_title Combinatorica (Budapest. 1981)
container_volume 39
creator Juskevicius, Tomas
Semetulskis, Grazvydas
description Consider the weighted sum [[summation].sup.n.sub.i=1] [a.sub.i][[epsilon].sub.i], where [([a.sub.i]).sup.n.sub.i=1] is a sequence of non-zero real numbers and [([[epsilon].sub.i]).sup.n.sub.i=1]--a sequence of independent Rademacher random variables, that is, P([[epsilon].sub.i[+ or -]1]) = -1. The classical Littlewood-Offord problem asks for the best possible upper bound for the probability P ([[summation].sup.n.sub.i=1] [a.sub.i][[epsilon].sub.i] = X. The first optimal result was obtained by Erdos in 1943 and since then his result was extended in many directions by Frankl, Katona, Kleitman, Griggs and other authors. In this paper we prove several Littlewood-Offord type inequalities in arbitrary groups. In groups having elements of finite order the worst case scenario is provided by the simple random walk on a cyclic subgroup. The inequalities we obtain are optimal if the underlying group contains an element of a certain order. It turns out that for torsion-free groups Erdos's bound still holds. Our results strengthen and generalize some very recent results by Tiep and Vu for certain matrix groups.
doi_str_mv 10.1007/s00493-018-3845-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2300965768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724059970</galeid><sourcerecordid>A724059970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-dcb0af31346a8753b01de976f2a98f5d001b61a8913d1c8b0097842acbef32593</originalsourceid><addsrcrecordid>eNp1kM1qwzAQhEVpoWnaB-jN0LPSlWRZ0jGE_gQCubRnIdtSUHAsR7IpffsquNBT2cPCMt_uziD0SGBFAMRzAigVw0AkZrLkWFyhBSmZwpUi9BotgILCqpLsFt2ldAQAyQhfINgPoz-Zrtj5cezsVwgt3jsXYltse3ueTOdHb1Ph--IthmlI9-jGmS7Zh9--RJ-vLx-bd7zbv2036x1uGOcjbpsajGOElZWRgrMaSGuVqBw1SjreApC6IkYqwlrSyBpACVlS09TWMcoVW6Knee8Qw3myadTHMMU-n9SUZXXFRXazRKtZdTCd1b53YYymydXak29Cb53P87WgJXClBGSAzEATQ0rROj3E7D9-awL6kqSek9Q5SX1JUovM0JlJWdsfbPx75X_oB0mldEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300965768</pqid></control><display><type>article</type><title>Optimal Littlewood-Offord Inequalities in Groups</title><source>Springer Nature - Complete Springer Journals</source><creator>Juskevicius, Tomas ; Semetulskis, Grazvydas</creator><creatorcontrib>Juskevicius, Tomas ; Semetulskis, Grazvydas</creatorcontrib><description>Consider the weighted sum [[summation].sup.n.sub.i=1] [a.sub.i][[epsilon].sub.i], where [([a.sub.i]).sup.n.sub.i=1] is a sequence of non-zero real numbers and [([[epsilon].sub.i]).sup.n.sub.i=1]--a sequence of independent Rademacher random variables, that is, P([[epsilon].sub.i[+ or -]1]) = -1. The classical Littlewood-Offord problem asks for the best possible upper bound for the probability P ([[summation].sup.n.sub.i=1] [a.sub.i][[epsilon].sub.i] = X. The first optimal result was obtained by Erdos in 1943 and since then his result was extended in many directions by Frankl, Katona, Kleitman, Griggs and other authors. In this paper we prove several Littlewood-Offord type inequalities in arbitrary groups. In groups having elements of finite order the worst case scenario is provided by the simple random walk on a cyclic subgroup. The inequalities we obtain are optimal if the underlying group contains an element of a certain order. It turns out that for torsion-free groups Erdos's bound still holds. Our results strengthen and generalize some very recent results by Tiep and Vu for certain matrix groups.</description><identifier>ISSN: 0209-9683</identifier><identifier>EISSN: 1439-6912</identifier><identifier>DOI: 10.1007/s00493-018-3845-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Combinatorics ; Mathematics ; Mathematics and Statistics</subject><ispartof>Combinatorica (Budapest. 1981), 2019-08, Vol.39 (4), p.911-921</ispartof><rights>János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-dcb0af31346a8753b01de976f2a98f5d001b61a8913d1c8b0097842acbef32593</citedby><cites>FETCH-LOGICAL-c355t-dcb0af31346a8753b01de976f2a98f5d001b61a8913d1c8b0097842acbef32593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00493-018-3845-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00493-018-3845-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Juskevicius, Tomas</creatorcontrib><creatorcontrib>Semetulskis, Grazvydas</creatorcontrib><title>Optimal Littlewood-Offord Inequalities in Groups</title><title>Combinatorica (Budapest. 1981)</title><addtitle>Combinatorica</addtitle><description>Consider the weighted sum [[summation].sup.n.sub.i=1] [a.sub.i][[epsilon].sub.i], where [([a.sub.i]).sup.n.sub.i=1] is a sequence of non-zero real numbers and [([[epsilon].sub.i]).sup.n.sub.i=1]--a sequence of independent Rademacher random variables, that is, P([[epsilon].sub.i[+ or -]1]) = -1. The classical Littlewood-Offord problem asks for the best possible upper bound for the probability P ([[summation].sup.n.sub.i=1] [a.sub.i][[epsilon].sub.i] = X. The first optimal result was obtained by Erdos in 1943 and since then his result was extended in many directions by Frankl, Katona, Kleitman, Griggs and other authors. In this paper we prove several Littlewood-Offord type inequalities in arbitrary groups. In groups having elements of finite order the worst case scenario is provided by the simple random walk on a cyclic subgroup. The inequalities we obtain are optimal if the underlying group contains an element of a certain order. It turns out that for torsion-free groups Erdos's bound still holds. Our results strengthen and generalize some very recent results by Tiep and Vu for certain matrix groups.</description><subject>Combinatorics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0209-9683</issn><issn>1439-6912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1qwzAQhEVpoWnaB-jN0LPSlWRZ0jGE_gQCubRnIdtSUHAsR7IpffsquNBT2cPCMt_uziD0SGBFAMRzAigVw0AkZrLkWFyhBSmZwpUi9BotgILCqpLsFt2ldAQAyQhfINgPoz-Zrtj5cezsVwgt3jsXYltse3ueTOdHb1Ph--IthmlI9-jGmS7Zh9--RJ-vLx-bd7zbv2036x1uGOcjbpsajGOElZWRgrMaSGuVqBw1SjreApC6IkYqwlrSyBpACVlS09TWMcoVW6Knee8Qw3myadTHMMU-n9SUZXXFRXazRKtZdTCd1b53YYymydXak29Cb53P87WgJXClBGSAzEATQ0rROj3E7D9-awL6kqSek9Q5SX1JUovM0JlJWdsfbPx75X_oB0mldEI</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Juskevicius, Tomas</creator><creator>Semetulskis, Grazvydas</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190801</creationdate><title>Optimal Littlewood-Offord Inequalities in Groups</title><author>Juskevicius, Tomas ; Semetulskis, Grazvydas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-dcb0af31346a8753b01de976f2a98f5d001b61a8913d1c8b0097842acbef32593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Combinatorics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juskevicius, Tomas</creatorcontrib><creatorcontrib>Semetulskis, Grazvydas</creatorcontrib><collection>CrossRef</collection><jtitle>Combinatorica (Budapest. 1981)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juskevicius, Tomas</au><au>Semetulskis, Grazvydas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Littlewood-Offord Inequalities in Groups</atitle><jtitle>Combinatorica (Budapest. 1981)</jtitle><stitle>Combinatorica</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>39</volume><issue>4</issue><spage>911</spage><epage>921</epage><pages>911-921</pages><issn>0209-9683</issn><eissn>1439-6912</eissn><abstract>Consider the weighted sum [[summation].sup.n.sub.i=1] [a.sub.i][[epsilon].sub.i], where [([a.sub.i]).sup.n.sub.i=1] is a sequence of non-zero real numbers and [([[epsilon].sub.i]).sup.n.sub.i=1]--a sequence of independent Rademacher random variables, that is, P([[epsilon].sub.i[+ or -]1]) = -1. The classical Littlewood-Offord problem asks for the best possible upper bound for the probability P ([[summation].sup.n.sub.i=1] [a.sub.i][[epsilon].sub.i] = X. The first optimal result was obtained by Erdos in 1943 and since then his result was extended in many directions by Frankl, Katona, Kleitman, Griggs and other authors. In this paper we prove several Littlewood-Offord type inequalities in arbitrary groups. In groups having elements of finite order the worst case scenario is provided by the simple random walk on a cyclic subgroup. The inequalities we obtain are optimal if the underlying group contains an element of a certain order. It turns out that for torsion-free groups Erdos's bound still holds. Our results strengthen and generalize some very recent results by Tiep and Vu for certain matrix groups.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00493-018-3845-7</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0209-9683
ispartof Combinatorica (Budapest. 1981), 2019-08, Vol.39 (4), p.911-921
issn 0209-9683
1439-6912
language eng
recordid cdi_proquest_journals_2300965768
source Springer Nature - Complete Springer Journals
subjects Combinatorics
Mathematics
Mathematics and Statistics
title Optimal Littlewood-Offord Inequalities in Groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Littlewood-Offord%20Inequalities%20in%20Groups&rft.jtitle=Combinatorica%20(Budapest.%201981)&rft.au=Juskevicius,%20Tomas&rft.date=2019-08-01&rft.volume=39&rft.issue=4&rft.spage=911&rft.epage=921&rft.pages=911-921&rft.issn=0209-9683&rft.eissn=1439-6912&rft_id=info:doi/10.1007/s00493-018-3845-7&rft_dat=%3Cgale_proqu%3EA724059970%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300965768&rft_id=info:pmid/&rft_galeid=A724059970&rfr_iscdi=true