A Neural Network for Detailed Human Depth Estimation from a Single Image

This paper presents a neural network to estimate a detailed depth map of the foreground human in a single RGB image. The result captures geometry details such as cloth wrinkles, which are important in visualization applications. To achieve this goal, we separate the depth map into a smooth base shap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-12
Hauptverfasser: Tang, Sicong, Tan, Feitong, Cheng, Kelvin, Li, Zhaoyang, Zhu, Siyu, Tan, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tang, Sicong
Tan, Feitong
Cheng, Kelvin
Li, Zhaoyang
Zhu, Siyu
Tan, Ping
description This paper presents a neural network to estimate a detailed depth map of the foreground human in a single RGB image. The result captures geometry details such as cloth wrinkles, which are important in visualization applications. To achieve this goal, we separate the depth map into a smooth base shape and a residual detail shape and design a network with two branches to regress them respectively. We design a training strategy to ensure both base and detail shapes can be faithfully learned by the corresponding network branches. Furthermore, we introduce a novel network layer to fuse a rough depth map and surface normals to further improve the final result. Quantitative comparison with fused `ground truth' captured by real depth cameras and qualitative examples on unconstrained Internet images demonstrate the strength of the proposed method. The code is available at https://github.com/sfu-gruvi-3dv/deep_human.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2300795546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300795546</sourcerecordid><originalsourceid>FETCH-proquest_journals_23007955463</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6EJOm1aX4oW7c6L4EfK2p-dR88Pp24QFcDcPMjGSM802xLRlbkDyEgVLKqpoJwTPS7OGKyUs9IX6cf0HnPBwxSqXxAU0y0k46xiecQlRGRuUsdN4ZkHBTttcIFyN7XJF5J3XA_MclWZ9P90NTjN69E4bYDi55O6WWcUrrnRBlxf-7vqmGOtk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300795546</pqid></control><display><type>article</type><title>A Neural Network for Detailed Human Depth Estimation from a Single Image</title><source>Free E- Journals</source><creator>Tang, Sicong ; Tan, Feitong ; Cheng, Kelvin ; Li, Zhaoyang ; Zhu, Siyu ; Tan, Ping</creator><creatorcontrib>Tang, Sicong ; Tan, Feitong ; Cheng, Kelvin ; Li, Zhaoyang ; Zhu, Siyu ; Tan, Ping</creatorcontrib><description>This paper presents a neural network to estimate a detailed depth map of the foreground human in a single RGB image. The result captures geometry details such as cloth wrinkles, which are important in visualization applications. To achieve this goal, we separate the depth map into a smooth base shape and a residual detail shape and design a network with two branches to regress them respectively. We design a training strategy to ensure both base and detail shapes can be faithfully learned by the corresponding network branches. Furthermore, we introduce a novel network layer to fuse a rough depth map and surface normals to further improve the final result. Quantitative comparison with fused `ground truth' captured by real depth cameras and qualitative examples on unconstrained Internet images demonstrate the strength of the proposed method. The code is available at https://github.com/sfu-gruvi-3dv/deep_human.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cloth ; Ground truth ; Neural networks</subject><ispartof>arXiv.org, 2019-12</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Tang, Sicong</creatorcontrib><creatorcontrib>Tan, Feitong</creatorcontrib><creatorcontrib>Cheng, Kelvin</creatorcontrib><creatorcontrib>Li, Zhaoyang</creatorcontrib><creatorcontrib>Zhu, Siyu</creatorcontrib><creatorcontrib>Tan, Ping</creatorcontrib><title>A Neural Network for Detailed Human Depth Estimation from a Single Image</title><title>arXiv.org</title><description>This paper presents a neural network to estimate a detailed depth map of the foreground human in a single RGB image. The result captures geometry details such as cloth wrinkles, which are important in visualization applications. To achieve this goal, we separate the depth map into a smooth base shape and a residual detail shape and design a network with two branches to regress them respectively. We design a training strategy to ensure both base and detail shapes can be faithfully learned by the corresponding network branches. Furthermore, we introduce a novel network layer to fuse a rough depth map and surface normals to further improve the final result. Quantitative comparison with fused `ground truth' captured by real depth cameras and qualitative examples on unconstrained Internet images demonstrate the strength of the proposed method. The code is available at https://github.com/sfu-gruvi-3dv/deep_human.</description><subject>Cloth</subject><subject>Ground truth</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6EJOm1aX4oW7c6L4EfK2p-dR88Pp24QFcDcPMjGSM802xLRlbkDyEgVLKqpoJwTPS7OGKyUs9IX6cf0HnPBwxSqXxAU0y0k46xiecQlRGRuUsdN4ZkHBTttcIFyN7XJF5J3XA_MclWZ9P90NTjN69E4bYDi55O6WWcUrrnRBlxf-7vqmGOtk</recordid><startdate>20191224</startdate><enddate>20191224</enddate><creator>Tang, Sicong</creator><creator>Tan, Feitong</creator><creator>Cheng, Kelvin</creator><creator>Li, Zhaoyang</creator><creator>Zhu, Siyu</creator><creator>Tan, Ping</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191224</creationdate><title>A Neural Network for Detailed Human Depth Estimation from a Single Image</title><author>Tang, Sicong ; Tan, Feitong ; Cheng, Kelvin ; Li, Zhaoyang ; Zhu, Siyu ; Tan, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23007955463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cloth</topic><topic>Ground truth</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Sicong</creatorcontrib><creatorcontrib>Tan, Feitong</creatorcontrib><creatorcontrib>Cheng, Kelvin</creatorcontrib><creatorcontrib>Li, Zhaoyang</creatorcontrib><creatorcontrib>Zhu, Siyu</creatorcontrib><creatorcontrib>Tan, Ping</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Sicong</au><au>Tan, Feitong</au><au>Cheng, Kelvin</au><au>Li, Zhaoyang</au><au>Zhu, Siyu</au><au>Tan, Ping</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Neural Network for Detailed Human Depth Estimation from a Single Image</atitle><jtitle>arXiv.org</jtitle><date>2019-12-24</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>This paper presents a neural network to estimate a detailed depth map of the foreground human in a single RGB image. The result captures geometry details such as cloth wrinkles, which are important in visualization applications. To achieve this goal, we separate the depth map into a smooth base shape and a residual detail shape and design a network with two branches to regress them respectively. We design a training strategy to ensure both base and detail shapes can be faithfully learned by the corresponding network branches. Furthermore, we introduce a novel network layer to fuse a rough depth map and surface normals to further improve the final result. Quantitative comparison with fused `ground truth' captured by real depth cameras and qualitative examples on unconstrained Internet images demonstrate the strength of the proposed method. The code is available at https://github.com/sfu-gruvi-3dv/deep_human.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2300795546
source Free E- Journals
subjects Cloth
Ground truth
Neural networks
title A Neural Network for Detailed Human Depth Estimation from a Single Image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Neural%20Network%20for%20Detailed%20Human%20Depth%20Estimation%20from%20a%20Single%20Image&rft.jtitle=arXiv.org&rft.au=Tang,%20Sicong&rft.date=2019-12-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2300795546%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300795546&rft_id=info:pmid/&rfr_iscdi=true