Verifying Safety and Persistence in Hybrid Systems Using Flowpipes and Continuous Invariants

We describe a method for verifying the temporal property of persistence in non-linear hybrid systems. Given some system and an initial set of states, the method establishes that system trajectories always eventually evolve into some specified target subset of the states of one of the discrete modes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of automated reasoning 2019-12, Vol.63 (4), p.1005-1029
Hauptverfasser: Sogokon, Andrew, Jackson, Paul B., Johnson, Taylor T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1029
container_issue 4
container_start_page 1005
container_title Journal of automated reasoning
container_volume 63
creator Sogokon, Andrew
Jackson, Paul B.
Johnson, Taylor T.
description We describe a method for verifying the temporal property of persistence in non-linear hybrid systems. Given some system and an initial set of states, the method establishes that system trajectories always eventually evolve into some specified target subset of the states of one of the discrete modes of the system, and always remain within this target region. The method also computes a time-bound within which the target region is always reached. The approach combines flowpipe computation with deductive reasoning about invariants and is more general than each technique alone. We illustrate the method with a case study showing that potentially destructive stick-slip oscillations of an oil-well drill eventually die away for a certain choice of drill control parameters. The case study demonstrates how just using flowpipes or just reasoning about invariants alone can be insufficient and shows the richness of systems that one can handle with the proposed method, since the systems features modes with non-polynomial ODEs. We also propose an alternative method for proving persistence that relies solely on flowpipe computation.
doi_str_mv 10.1007/s10817-018-9497-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300718003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300718003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a550de5e41e42eb88090bbd8eef82208eafb51eab42c343ba5544a55374650783</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoOKcfwLeAz9VLky7powx1g4HCnE9CSNvryNjSmrS6fnszJ_jkyx0cv_8d9yPkmsEtA5B3gYFiMgGmklzkMtmfkBHLJE9gIuGUjIBNVCIF5-fkIoQNAHAG-Yi8v6G39WDdmi5Njd1AjavoC_pgQ4euRGodnQ2FtxVdDnG0C3QVDvjjtvlqbYvhJzFtXGdd3_SBzt2n8da4LlySs9psA1799jFZPT68TmfJ4vlpPr1fJCXP8i4xWQYVZigYihQLpSCHoqgUYq3SFBSausgYmkKkJRe8iLwQsXApJhlIxcfk5ri39c1Hj6HTm6b3Lp7UKY92mIrvRoodqdI3IXisdevtzvhBM9AHifooUUeJ-iBR72MmPWZCZN0a_d_m_0PfHP517A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300718003</pqid></control><display><type>article</type><title>Verifying Safety and Persistence in Hybrid Systems Using Flowpipes and Continuous Invariants</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sogokon, Andrew ; Jackson, Paul B. ; Johnson, Taylor T.</creator><creatorcontrib>Sogokon, Andrew ; Jackson, Paul B. ; Johnson, Taylor T.</creatorcontrib><description>We describe a method for verifying the temporal property of persistence in non-linear hybrid systems. Given some system and an initial set of states, the method establishes that system trajectories always eventually evolve into some specified target subset of the states of one of the discrete modes of the system, and always remain within this target region. The method also computes a time-bound within which the target region is always reached. The approach combines flowpipe computation with deductive reasoning about invariants and is more general than each technique alone. We illustrate the method with a case study showing that potentially destructive stick-slip oscillations of an oil-well drill eventually die away for a certain choice of drill control parameters. The case study demonstrates how just using flowpipes or just reasoning about invariants alone can be insufficient and shows the richness of systems that one can handle with the proposed method, since the systems features modes with non-polynomial ODEs. We also propose an alternative method for proving persistence that relies solely on flowpipe computation.</description><identifier>ISSN: 0168-7433</identifier><identifier>EISSN: 1573-0670</identifier><identifier>DOI: 10.1007/s10817-018-9497-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Case studies ; Computation ; Computer Science ; Hybrid systems ; Invariants ; Mathematical Logic and Formal Languages ; Mathematical Logic and Foundations ; Nonlinear systems ; Polynomials ; Reasoning ; Symbolic and Algebraic Manipulation</subject><ispartof>Journal of automated reasoning, 2019-12, Vol.63 (4), p.1005-1029</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Journal of Automated Reasoning is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a550de5e41e42eb88090bbd8eef82208eafb51eab42c343ba5544a55374650783</citedby><cites>FETCH-LOGICAL-c359t-a550de5e41e42eb88090bbd8eef82208eafb51eab42c343ba5544a55374650783</cites><orcidid>0000-0003-3863-8336 ; 0000-0001-8021-9923 ; 0000-0002-5849-7991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10817-018-9497-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10817-018-9497-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sogokon, Andrew</creatorcontrib><creatorcontrib>Jackson, Paul B.</creatorcontrib><creatorcontrib>Johnson, Taylor T.</creatorcontrib><title>Verifying Safety and Persistence in Hybrid Systems Using Flowpipes and Continuous Invariants</title><title>Journal of automated reasoning</title><addtitle>J Autom Reasoning</addtitle><description>We describe a method for verifying the temporal property of persistence in non-linear hybrid systems. Given some system and an initial set of states, the method establishes that system trajectories always eventually evolve into some specified target subset of the states of one of the discrete modes of the system, and always remain within this target region. The method also computes a time-bound within which the target region is always reached. The approach combines flowpipe computation with deductive reasoning about invariants and is more general than each technique alone. We illustrate the method with a case study showing that potentially destructive stick-slip oscillations of an oil-well drill eventually die away for a certain choice of drill control parameters. The case study demonstrates how just using flowpipes or just reasoning about invariants alone can be insufficient and shows the richness of systems that one can handle with the proposed method, since the systems features modes with non-polynomial ODEs. We also propose an alternative method for proving persistence that relies solely on flowpipe computation.</description><subject>Artificial Intelligence</subject><subject>Case studies</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Hybrid systems</subject><subject>Invariants</subject><subject>Mathematical Logic and Formal Languages</subject><subject>Mathematical Logic and Foundations</subject><subject>Nonlinear systems</subject><subject>Polynomials</subject><subject>Reasoning</subject><subject>Symbolic and Algebraic Manipulation</subject><issn>0168-7433</issn><issn>1573-0670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kFFLwzAQx4MoOKcfwLeAz9VLky7powx1g4HCnE9CSNvryNjSmrS6fnszJ_jkyx0cv_8d9yPkmsEtA5B3gYFiMgGmklzkMtmfkBHLJE9gIuGUjIBNVCIF5-fkIoQNAHAG-Yi8v6G39WDdmi5Njd1AjavoC_pgQ4euRGodnQ2FtxVdDnG0C3QVDvjjtvlqbYvhJzFtXGdd3_SBzt2n8da4LlySs9psA1799jFZPT68TmfJ4vlpPr1fJCXP8i4xWQYVZigYihQLpSCHoqgUYq3SFBSausgYmkKkJRe8iLwQsXApJhlIxcfk5ri39c1Hj6HTm6b3Lp7UKY92mIrvRoodqdI3IXisdevtzvhBM9AHifooUUeJ-iBR72MmPWZCZN0a_d_m_0PfHP517A</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Sogokon, Andrew</creator><creator>Jackson, Paul B.</creator><creator>Johnson, Taylor T.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3863-8336</orcidid><orcidid>https://orcid.org/0000-0001-8021-9923</orcidid><orcidid>https://orcid.org/0000-0002-5849-7991</orcidid></search><sort><creationdate>20191201</creationdate><title>Verifying Safety and Persistence in Hybrid Systems Using Flowpipes and Continuous Invariants</title><author>Sogokon, Andrew ; Jackson, Paul B. ; Johnson, Taylor T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a550de5e41e42eb88090bbd8eef82208eafb51eab42c343ba5544a55374650783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Case studies</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Hybrid systems</topic><topic>Invariants</topic><topic>Mathematical Logic and Formal Languages</topic><topic>Mathematical Logic and Foundations</topic><topic>Nonlinear systems</topic><topic>Polynomials</topic><topic>Reasoning</topic><topic>Symbolic and Algebraic Manipulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sogokon, Andrew</creatorcontrib><creatorcontrib>Jackson, Paul B.</creatorcontrib><creatorcontrib>Johnson, Taylor T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of automated reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sogokon, Andrew</au><au>Jackson, Paul B.</au><au>Johnson, Taylor T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Verifying Safety and Persistence in Hybrid Systems Using Flowpipes and Continuous Invariants</atitle><jtitle>Journal of automated reasoning</jtitle><stitle>J Autom Reasoning</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>63</volume><issue>4</issue><spage>1005</spage><epage>1029</epage><pages>1005-1029</pages><issn>0168-7433</issn><eissn>1573-0670</eissn><abstract>We describe a method for verifying the temporal property of persistence in non-linear hybrid systems. Given some system and an initial set of states, the method establishes that system trajectories always eventually evolve into some specified target subset of the states of one of the discrete modes of the system, and always remain within this target region. The method also computes a time-bound within which the target region is always reached. The approach combines flowpipe computation with deductive reasoning about invariants and is more general than each technique alone. We illustrate the method with a case study showing that potentially destructive stick-slip oscillations of an oil-well drill eventually die away for a certain choice of drill control parameters. The case study demonstrates how just using flowpipes or just reasoning about invariants alone can be insufficient and shows the richness of systems that one can handle with the proposed method, since the systems features modes with non-polynomial ODEs. We also propose an alternative method for proving persistence that relies solely on flowpipe computation.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10817-018-9497-x</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-3863-8336</orcidid><orcidid>https://orcid.org/0000-0001-8021-9923</orcidid><orcidid>https://orcid.org/0000-0002-5849-7991</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-7433
ispartof Journal of automated reasoning, 2019-12, Vol.63 (4), p.1005-1029
issn 0168-7433
1573-0670
language eng
recordid cdi_proquest_journals_2300718003
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Case studies
Computation
Computer Science
Hybrid systems
Invariants
Mathematical Logic and Formal Languages
Mathematical Logic and Foundations
Nonlinear systems
Polynomials
Reasoning
Symbolic and Algebraic Manipulation
title Verifying Safety and Persistence in Hybrid Systems Using Flowpipes and Continuous Invariants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Verifying%20Safety%20and%20Persistence%20in%20Hybrid%20Systems%20Using%20Flowpipes%20and%20Continuous%20Invariants&rft.jtitle=Journal%20of%20automated%20reasoning&rft.au=Sogokon,%20Andrew&rft.date=2019-12-01&rft.volume=63&rft.issue=4&rft.spage=1005&rft.epage=1029&rft.pages=1005-1029&rft.issn=0168-7433&rft.eissn=1573-0670&rft_id=info:doi/10.1007/s10817-018-9497-x&rft_dat=%3Cproquest_cross%3E2300718003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300718003&rft_id=info:pmid/&rfr_iscdi=true