Raw material criticality assessment as a complement to environmental life cycle assessment: Examining methods for product‐level supply risk assessment
Summary The diversity of raw materials used in modern products, compounded by the risk of supply disruptions—due to uneven geological distribution of resources, along with socioeconomic factors like production concentration and political (in)stability of raw material producing countries—has drawn at...
Gespeichert in:
Veröffentlicht in: | Journal of industrial ecology 2019-10, Vol.23 (5), p.1226-1236 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1236 |
---|---|
container_issue | 5 |
container_start_page | 1226 |
container_title | Journal of industrial ecology |
container_volume | 23 |
creator | Cimprich, Alexander Bach, Vanessa Helbig, Christoph Thorenz, Andrea Schrijvers, Dieuwertje Sonnemann, Guido Young, Steven B. Sonderegger, Thomas Berger, Markus |
description | Summary
The diversity of raw materials used in modern products, compounded by the risk of supply disruptions—due to uneven geological distribution of resources, along with socioeconomic factors like production concentration and political (in)stability of raw material producing countries—has drawn attention to the subject of raw material “criticality.” In this article, we review the state of the art regarding the integration of criticality assessment, herein termed “product‐level supply risk assessment,” as a complement to environmental life cycle assessment. We describe and compare three methods explicitly developed for this purpose—Geopolitical Supply Risk (GeoPolRisk), Economic Scarcity Potential (ESP), and the Integrated Method to Assess Resource Efficiency (ESSENZ)—based on a set of criteria including considerations of data sources, uncertainties, and other contentious methodological aspects. We test the methods on a case study of a European‐manufactured electric vehicle, and conclude with guidance for appropriate application and interpretation, along with opportunities for further methodological development. Although the GeoPolRisk, ESP, and ESSENZ methods have several limitations, they can be useful for preliminary assessments of the potential impacts of raw material supply risks on a product system (i.e., “outside‐in” impacts) alongside the impacts of a product system on the environment (i.e., “inside‐out” impacts). Care is needed to not overlook critical raw materials used in small amounts but nonetheless important to product functionality. Further methodological development could address regional and firm‐level supply risks, multiple supply‐chain stages, and material recycling, while improving coverage of supply risk characterization factors. |
doi_str_mv | 10.1111/jiec.12865 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300686904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300686904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4035-8615be4453ecfa4409cdf5002cee94ad9e1a024d940d85c88176fc8ed94c8f543</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqWw4QSW2CGljBMn2OxQVaCoEhKCdWScCbg4D-y0JTuOwJLzcRKShgUrZjMPff_M6CfkmMGEdXG2NKgnLBRJvENGLI4gkKGE3a4GIQImBeyTA--XACxKQhiRr3u1oYVq0BllqXamMVpZ07RUeY_eF1g2XUkV1VVRW9z2TUWxXBtXlX3b6azJkepWW_wju6Czd1WY0pTPtMDmpco8zStHa1dlK918f3xaXKOlflXXtqXO-Nc_6kOylyvr8eg3j8nj1exhehMs7q7n08tFoDlEcSASFj8h53GEOlecg9RZHgOEGlFylUlkCkKeSQ6ZiLUQ7DzJtcBuoEUe82hMToa93VtvK_RNuqxWruxOpmEEkIhEQk-dDpR2lfcO87R2plCuTRmkvfNp73y6db6D2QBvjMX2HzK9nc-mg-YHvbKLYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300686904</pqid></control><display><type>article</type><title>Raw material criticality assessment as a complement to environmental life cycle assessment: Examining methods for product‐level supply risk assessment</title><source>Wiley Online Library Journals Frontfile Complete</source><source>PAIS Index</source><creator>Cimprich, Alexander ; Bach, Vanessa ; Helbig, Christoph ; Thorenz, Andrea ; Schrijvers, Dieuwertje ; Sonnemann, Guido ; Young, Steven B. ; Sonderegger, Thomas ; Berger, Markus</creator><creatorcontrib>Cimprich, Alexander ; Bach, Vanessa ; Helbig, Christoph ; Thorenz, Andrea ; Schrijvers, Dieuwertje ; Sonnemann, Guido ; Young, Steven B. ; Sonderegger, Thomas ; Berger, Markus</creatorcontrib><description>Summary
The diversity of raw materials used in modern products, compounded by the risk of supply disruptions—due to uneven geological distribution of resources, along with socioeconomic factors like production concentration and political (in)stability of raw material producing countries—has drawn attention to the subject of raw material “criticality.” In this article, we review the state of the art regarding the integration of criticality assessment, herein termed “product‐level supply risk assessment,” as a complement to environmental life cycle assessment. We describe and compare three methods explicitly developed for this purpose—Geopolitical Supply Risk (GeoPolRisk), Economic Scarcity Potential (ESP), and the Integrated Method to Assess Resource Efficiency (ESSENZ)—based on a set of criteria including considerations of data sources, uncertainties, and other contentious methodological aspects. We test the methods on a case study of a European‐manufactured electric vehicle, and conclude with guidance for appropriate application and interpretation, along with opportunities for further methodological development. Although the GeoPolRisk, ESP, and ESSENZ methods have several limitations, they can be useful for preliminary assessments of the potential impacts of raw material supply risks on a product system (i.e., “outside‐in” impacts) alongside the impacts of a product system on the environment (i.e., “inside‐out” impacts). Care is needed to not overlook critical raw materials used in small amounts but nonetheless important to product functionality. Further methodological development could address regional and firm‐level supply risks, multiple supply‐chain stages, and material recycling, while improving coverage of supply risk characterization factors.</description><identifier>ISSN: 1088-1980</identifier><identifier>EISSN: 1530-9290</identifier><identifier>DOI: 10.1111/jiec.12865</identifier><language>eng</language><publisher>New Haven: Wiley Subscription Services, Inc</publisher><subject>Alternative fuel vehicles ; Case studies ; critical raw materials ; Electric vehicles ; Environmental assessment ; Environmental impact ; Geological distribution ; Geopolitics ; industrial ecology ; Levels ; Life cycle analysis ; Life cycle assessment ; life cycle sustainability assessment ; Life cycles ; raw material criticality assessment ; Raw materials ; Recycling ; Regional development ; Research methodology ; Risk assessment ; Risk factors ; Scarcity ; Social factors ; Socioeconomic data ; Socioeconomic factors ; Socioeconomics ; State-of-the-art reviews ; supply risk ; Test procedures</subject><ispartof>Journal of industrial ecology, 2019-10, Vol.23 (5), p.1226-1236</ispartof><rights>2019 by Yale University</rights><rights>2019, Yale University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4035-8615be4453ecfa4409cdf5002cee94ad9e1a024d940d85c88176fc8ed94c8f543</citedby><cites>FETCH-LOGICAL-c4035-8615be4453ecfa4409cdf5002cee94ad9e1a024d940d85c88176fc8ed94c8f543</cites><orcidid>0000-0001-6709-373X ; 0000-0003-2581-1910 ; 0000-0002-0083-9709 ; 0000-0003-3934-9456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjiec.12865$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjiec.12865$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27847,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Cimprich, Alexander</creatorcontrib><creatorcontrib>Bach, Vanessa</creatorcontrib><creatorcontrib>Helbig, Christoph</creatorcontrib><creatorcontrib>Thorenz, Andrea</creatorcontrib><creatorcontrib>Schrijvers, Dieuwertje</creatorcontrib><creatorcontrib>Sonnemann, Guido</creatorcontrib><creatorcontrib>Young, Steven B.</creatorcontrib><creatorcontrib>Sonderegger, Thomas</creatorcontrib><creatorcontrib>Berger, Markus</creatorcontrib><title>Raw material criticality assessment as a complement to environmental life cycle assessment: Examining methods for product‐level supply risk assessment</title><title>Journal of industrial ecology</title><description>Summary
The diversity of raw materials used in modern products, compounded by the risk of supply disruptions—due to uneven geological distribution of resources, along with socioeconomic factors like production concentration and political (in)stability of raw material producing countries—has drawn attention to the subject of raw material “criticality.” In this article, we review the state of the art regarding the integration of criticality assessment, herein termed “product‐level supply risk assessment,” as a complement to environmental life cycle assessment. We describe and compare three methods explicitly developed for this purpose—Geopolitical Supply Risk (GeoPolRisk), Economic Scarcity Potential (ESP), and the Integrated Method to Assess Resource Efficiency (ESSENZ)—based on a set of criteria including considerations of data sources, uncertainties, and other contentious methodological aspects. We test the methods on a case study of a European‐manufactured electric vehicle, and conclude with guidance for appropriate application and interpretation, along with opportunities for further methodological development. Although the GeoPolRisk, ESP, and ESSENZ methods have several limitations, they can be useful for preliminary assessments of the potential impacts of raw material supply risks on a product system (i.e., “outside‐in” impacts) alongside the impacts of a product system on the environment (i.e., “inside‐out” impacts). Care is needed to not overlook critical raw materials used in small amounts but nonetheless important to product functionality. Further methodological development could address regional and firm‐level supply risks, multiple supply‐chain stages, and material recycling, while improving coverage of supply risk characterization factors.</description><subject>Alternative fuel vehicles</subject><subject>Case studies</subject><subject>critical raw materials</subject><subject>Electric vehicles</subject><subject>Environmental assessment</subject><subject>Environmental impact</subject><subject>Geological distribution</subject><subject>Geopolitics</subject><subject>industrial ecology</subject><subject>Levels</subject><subject>Life cycle analysis</subject><subject>Life cycle assessment</subject><subject>life cycle sustainability assessment</subject><subject>Life cycles</subject><subject>raw material criticality assessment</subject><subject>Raw materials</subject><subject>Recycling</subject><subject>Regional development</subject><subject>Research methodology</subject><subject>Risk assessment</subject><subject>Risk factors</subject><subject>Scarcity</subject><subject>Social factors</subject><subject>Socioeconomic data</subject><subject>Socioeconomic factors</subject><subject>Socioeconomics</subject><subject>State-of-the-art reviews</subject><subject>supply risk</subject><subject>Test procedures</subject><issn>1088-1980</issn><issn>1530-9290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp9kEtOwzAQhi0EEqWw4QSW2CGljBMn2OxQVaCoEhKCdWScCbg4D-y0JTuOwJLzcRKShgUrZjMPff_M6CfkmMGEdXG2NKgnLBRJvENGLI4gkKGE3a4GIQImBeyTA--XACxKQhiRr3u1oYVq0BllqXamMVpZ07RUeY_eF1g2XUkV1VVRW9z2TUWxXBtXlX3b6azJkepWW_wju6Czd1WY0pTPtMDmpco8zStHa1dlK918f3xaXKOlflXXtqXO-Nc_6kOylyvr8eg3j8nj1exhehMs7q7n08tFoDlEcSASFj8h53GEOlecg9RZHgOEGlFylUlkCkKeSQ6ZiLUQ7DzJtcBuoEUe82hMToa93VtvK_RNuqxWruxOpmEEkIhEQk-dDpR2lfcO87R2plCuTRmkvfNp73y6db6D2QBvjMX2HzK9nc-mg-YHvbKLYQ</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Cimprich, Alexander</creator><creator>Bach, Vanessa</creator><creator>Helbig, Christoph</creator><creator>Thorenz, Andrea</creator><creator>Schrijvers, Dieuwertje</creator><creator>Sonnemann, Guido</creator><creator>Young, Steven B.</creator><creator>Sonderegger, Thomas</creator><creator>Berger, Markus</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TQ</scope><scope>8BJ</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6709-373X</orcidid><orcidid>https://orcid.org/0000-0003-2581-1910</orcidid><orcidid>https://orcid.org/0000-0002-0083-9709</orcidid><orcidid>https://orcid.org/0000-0003-3934-9456</orcidid></search><sort><creationdate>201910</creationdate><title>Raw material criticality assessment as a complement to environmental life cycle assessment: Examining methods for product‐level supply risk assessment</title><author>Cimprich, Alexander ; Bach, Vanessa ; Helbig, Christoph ; Thorenz, Andrea ; Schrijvers, Dieuwertje ; Sonnemann, Guido ; Young, Steven B. ; Sonderegger, Thomas ; Berger, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4035-8615be4453ecfa4409cdf5002cee94ad9e1a024d940d85c88176fc8ed94c8f543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternative fuel vehicles</topic><topic>Case studies</topic><topic>critical raw materials</topic><topic>Electric vehicles</topic><topic>Environmental assessment</topic><topic>Environmental impact</topic><topic>Geological distribution</topic><topic>Geopolitics</topic><topic>industrial ecology</topic><topic>Levels</topic><topic>Life cycle analysis</topic><topic>Life cycle assessment</topic><topic>life cycle sustainability assessment</topic><topic>Life cycles</topic><topic>raw material criticality assessment</topic><topic>Raw materials</topic><topic>Recycling</topic><topic>Regional development</topic><topic>Research methodology</topic><topic>Risk assessment</topic><topic>Risk factors</topic><topic>Scarcity</topic><topic>Social factors</topic><topic>Socioeconomic data</topic><topic>Socioeconomic factors</topic><topic>Socioeconomics</topic><topic>State-of-the-art reviews</topic><topic>supply risk</topic><topic>Test procedures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cimprich, Alexander</creatorcontrib><creatorcontrib>Bach, Vanessa</creatorcontrib><creatorcontrib>Helbig, Christoph</creatorcontrib><creatorcontrib>Thorenz, Andrea</creatorcontrib><creatorcontrib>Schrijvers, Dieuwertje</creatorcontrib><creatorcontrib>Sonnemann, Guido</creatorcontrib><creatorcontrib>Young, Steven B.</creatorcontrib><creatorcontrib>Sonderegger, Thomas</creatorcontrib><creatorcontrib>Berger, Markus</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><jtitle>Journal of industrial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cimprich, Alexander</au><au>Bach, Vanessa</au><au>Helbig, Christoph</au><au>Thorenz, Andrea</au><au>Schrijvers, Dieuwertje</au><au>Sonnemann, Guido</au><au>Young, Steven B.</au><au>Sonderegger, Thomas</au><au>Berger, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raw material criticality assessment as a complement to environmental life cycle assessment: Examining methods for product‐level supply risk assessment</atitle><jtitle>Journal of industrial ecology</jtitle><date>2019-10</date><risdate>2019</risdate><volume>23</volume><issue>5</issue><spage>1226</spage><epage>1236</epage><pages>1226-1236</pages><issn>1088-1980</issn><eissn>1530-9290</eissn><abstract>Summary
The diversity of raw materials used in modern products, compounded by the risk of supply disruptions—due to uneven geological distribution of resources, along with socioeconomic factors like production concentration and political (in)stability of raw material producing countries—has drawn attention to the subject of raw material “criticality.” In this article, we review the state of the art regarding the integration of criticality assessment, herein termed “product‐level supply risk assessment,” as a complement to environmental life cycle assessment. We describe and compare three methods explicitly developed for this purpose—Geopolitical Supply Risk (GeoPolRisk), Economic Scarcity Potential (ESP), and the Integrated Method to Assess Resource Efficiency (ESSENZ)—based on a set of criteria including considerations of data sources, uncertainties, and other contentious methodological aspects. We test the methods on a case study of a European‐manufactured electric vehicle, and conclude with guidance for appropriate application and interpretation, along with opportunities for further methodological development. Although the GeoPolRisk, ESP, and ESSENZ methods have several limitations, they can be useful for preliminary assessments of the potential impacts of raw material supply risks on a product system (i.e., “outside‐in” impacts) alongside the impacts of a product system on the environment (i.e., “inside‐out” impacts). Care is needed to not overlook critical raw materials used in small amounts but nonetheless important to product functionality. Further methodological development could address regional and firm‐level supply risks, multiple supply‐chain stages, and material recycling, while improving coverage of supply risk characterization factors.</abstract><cop>New Haven</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jiec.12865</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6709-373X</orcidid><orcidid>https://orcid.org/0000-0003-2581-1910</orcidid><orcidid>https://orcid.org/0000-0002-0083-9709</orcidid><orcidid>https://orcid.org/0000-0003-3934-9456</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-1980 |
ispartof | Journal of industrial ecology, 2019-10, Vol.23 (5), p.1226-1236 |
issn | 1088-1980 1530-9290 |
language | eng |
recordid | cdi_proquest_journals_2300686904 |
source | Wiley Online Library Journals Frontfile Complete; PAIS Index |
subjects | Alternative fuel vehicles Case studies critical raw materials Electric vehicles Environmental assessment Environmental impact Geological distribution Geopolitics industrial ecology Levels Life cycle analysis Life cycle assessment life cycle sustainability assessment Life cycles raw material criticality assessment Raw materials Recycling Regional development Research methodology Risk assessment Risk factors Scarcity Social factors Socioeconomic data Socioeconomic factors Socioeconomics State-of-the-art reviews supply risk Test procedures |
title | Raw material criticality assessment as a complement to environmental life cycle assessment: Examining methods for product‐level supply risk assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raw%20material%20criticality%20assessment%20as%20a%20complement%20to%20environmental%20life%20cycle%20assessment:%20Examining%20methods%20for%20product%E2%80%90level%20supply%20risk%20assessment&rft.jtitle=Journal%20of%20industrial%20ecology&rft.au=Cimprich,%20Alexander&rft.date=2019-10&rft.volume=23&rft.issue=5&rft.spage=1226&rft.epage=1236&rft.pages=1226-1236&rft.issn=1088-1980&rft.eissn=1530-9290&rft_id=info:doi/10.1111/jiec.12865&rft_dat=%3Cproquest_cross%3E2300686904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300686904&rft_id=info:pmid/&rfr_iscdi=true |