Inconsistency Proofs for ASP: The ASP - DRUPE Format

Answer Set Programming (ASP) solvers are highly-tuned and complex procedures that implicitly solve the consistency problem, i.e., deciding whether a logic program admits an answer set. Verifying whether a claimed answer set is formally a correct answer set of the program can be decided in polynomial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory and practice of logic programming 2019-09, Vol.19 (5-6), p.891-907
Hauptverfasser: ALVIANO, MARIO, DODARO, CARMINE, FICHTE, JOHANNES K., HECHER, MARKUS, PHILIPP, TOBIAS, RATH, JAKOB
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 907
container_issue 5-6
container_start_page 891
container_title Theory and practice of logic programming
container_volume 19
creator ALVIANO, MARIO
DODARO, CARMINE
FICHTE, JOHANNES K.
HECHER, MARKUS
PHILIPP, TOBIAS
RATH, JAKOB
description Answer Set Programming (ASP) solvers are highly-tuned and complex procedures that implicitly solve the consistency problem, i.e., deciding whether a logic program admits an answer set. Verifying whether a claimed answer set is formally a correct answer set of the program can be decided in polynomial time for (normal) programs. However, it is far from immediate to verify whether a program that is claimed to be inconsistent, indeed does not admit any answer sets. In this paper, we address this problem and develop the new proof format ASP-DRUPE for propositional, disjunctive logic programs, including weight and choice rules. ASP-DRUPE is based on the Reverse Unit Propagation (RUP) format designed for Boolean satisfiability. We establish correctness of ASP-DRUPE and discuss how to integrate it into modern ASP solvers. Later, we provide an implementation of ASP-DRUPE into the wasp solver for normal logic programs.
doi_str_mv 10.1017/S1471068419000255
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300624344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1471068419000255</cupid><sourcerecordid>2300624344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-54bd40a05092d7ca39d4f930492bed84a1467edb2389067dca7e84f66a9b66d73</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA8-okmU023kpttVCw2Pa8ZDdZ3eJuarI99N-7tQUP4mkeM-97A4-QWwb3DJh6WDJUDGSGTAMAT9MzMuhXaSIgY-c_miWH-yW5inEDwKTgOCA4a0vfxjp2ri33dBG8ryKtfKCj5eKRrj7cQdCEPr2tFxM69aEx3TW5qMxndDenOSTr6WQ1fknmr8-z8WielIKpLkmxsAgGUtDcqtIIbbHSAlDzwtkMDUOpnC24yDRIZUujXIaVlEYXUlolhuTumLsN_mvnYpdv_C60_cucCwDJUSD2LnZ0lcHHGFyVb0PdmLDPGeSHcvI_5fSMODGmKUJt391v9P_UN2i-Yks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300624344</pqid></control><display><type>article</type><title>Inconsistency Proofs for ASP: The ASP - DRUPE Format</title><source>Cambridge University Press Journals Complete</source><creator>ALVIANO, MARIO ; DODARO, CARMINE ; FICHTE, JOHANNES K. ; HECHER, MARKUS ; PHILIPP, TOBIAS ; RATH, JAKOB</creator><creatorcontrib>ALVIANO, MARIO ; DODARO, CARMINE ; FICHTE, JOHANNES K. ; HECHER, MARKUS ; PHILIPP, TOBIAS ; RATH, JAKOB</creatorcontrib><description>Answer Set Programming (ASP) solvers are highly-tuned and complex procedures that implicitly solve the consistency problem, i.e., deciding whether a logic program admits an answer set. Verifying whether a claimed answer set is formally a correct answer set of the program can be decided in polynomial time for (normal) programs. However, it is far from immediate to verify whether a program that is claimed to be inconsistent, indeed does not admit any answer sets. In this paper, we address this problem and develop the new proof format ASP-DRUPE for propositional, disjunctive logic programs, including weight and choice rules. ASP-DRUPE is based on the Reverse Unit Propagation (RUP) format designed for Boolean satisfiability. We establish correctness of ASP-DRUPE and discuss how to integrate it into modern ASP solvers. Later, we provide an implementation of ASP-DRUPE into the wasp solver for normal logic programs.</description><identifier>ISSN: 1471-0684</identifier><identifier>EISSN: 1475-3081</identifier><identifier>DOI: 10.1017/S1471068419000255</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>35th International Conference on Logic Programming ; Boolean algebra ; Declarative programming ; Format ; Logic programming ; Logic programs ; Mathematical programming ; Original Article ; Polynomials ; Solvers</subject><ispartof>Theory and practice of logic programming, 2019-09, Vol.19 (5-6), p.891-907</ispartof><rights>Cambridge University Press 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-54bd40a05092d7ca39d4f930492bed84a1467edb2389067dca7e84f66a9b66d73</citedby><cites>FETCH-LOGICAL-c317t-54bd40a05092d7ca39d4f930492bed84a1467edb2389067dca7e84f66a9b66d73</cites><orcidid>0000-0002-5617-5286 ; 0000-0002-2052-2063 ; 0000-0003-0131-6771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1471068419000255/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>ALVIANO, MARIO</creatorcontrib><creatorcontrib>DODARO, CARMINE</creatorcontrib><creatorcontrib>FICHTE, JOHANNES K.</creatorcontrib><creatorcontrib>HECHER, MARKUS</creatorcontrib><creatorcontrib>PHILIPP, TOBIAS</creatorcontrib><creatorcontrib>RATH, JAKOB</creatorcontrib><title>Inconsistency Proofs for ASP: The ASP - DRUPE Format</title><title>Theory and practice of logic programming</title><addtitle>Theory and Practice of Logic Programming</addtitle><description>Answer Set Programming (ASP) solvers are highly-tuned and complex procedures that implicitly solve the consistency problem, i.e., deciding whether a logic program admits an answer set. Verifying whether a claimed answer set is formally a correct answer set of the program can be decided in polynomial time for (normal) programs. However, it is far from immediate to verify whether a program that is claimed to be inconsistent, indeed does not admit any answer sets. In this paper, we address this problem and develop the new proof format ASP-DRUPE for propositional, disjunctive logic programs, including weight and choice rules. ASP-DRUPE is based on the Reverse Unit Propagation (RUP) format designed for Boolean satisfiability. We establish correctness of ASP-DRUPE and discuss how to integrate it into modern ASP solvers. Later, we provide an implementation of ASP-DRUPE into the wasp solver for normal logic programs.</description><subject>35th International Conference on Logic Programming</subject><subject>Boolean algebra</subject><subject>Declarative programming</subject><subject>Format</subject><subject>Logic programming</subject><subject>Logic programs</subject><subject>Mathematical programming</subject><subject>Original Article</subject><subject>Polynomials</subject><subject>Solvers</subject><issn>1471-0684</issn><issn>1475-3081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wFvA8-okmU023kpttVCw2Pa8ZDdZ3eJuarI99N-7tQUP4mkeM-97A4-QWwb3DJh6WDJUDGSGTAMAT9MzMuhXaSIgY-c_miWH-yW5inEDwKTgOCA4a0vfxjp2ri33dBG8ryKtfKCj5eKRrj7cQdCEPr2tFxM69aEx3TW5qMxndDenOSTr6WQ1fknmr8-z8WielIKpLkmxsAgGUtDcqtIIbbHSAlDzwtkMDUOpnC24yDRIZUujXIaVlEYXUlolhuTumLsN_mvnYpdv_C60_cucCwDJUSD2LnZ0lcHHGFyVb0PdmLDPGeSHcvI_5fSMODGmKUJt391v9P_UN2i-Yks</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>ALVIANO, MARIO</creator><creator>DODARO, CARMINE</creator><creator>FICHTE, JOHANNES K.</creator><creator>HECHER, MARKUS</creator><creator>PHILIPP, TOBIAS</creator><creator>RATH, JAKOB</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5617-5286</orcidid><orcidid>https://orcid.org/0000-0002-2052-2063</orcidid><orcidid>https://orcid.org/0000-0003-0131-6771</orcidid></search><sort><creationdate>201909</creationdate><title>Inconsistency Proofs for ASP: The ASP - DRUPE Format</title><author>ALVIANO, MARIO ; DODARO, CARMINE ; FICHTE, JOHANNES K. ; HECHER, MARKUS ; PHILIPP, TOBIAS ; RATH, JAKOB</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-54bd40a05092d7ca39d4f930492bed84a1467edb2389067dca7e84f66a9b66d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>35th International Conference on Logic Programming</topic><topic>Boolean algebra</topic><topic>Declarative programming</topic><topic>Format</topic><topic>Logic programming</topic><topic>Logic programs</topic><topic>Mathematical programming</topic><topic>Original Article</topic><topic>Polynomials</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ALVIANO, MARIO</creatorcontrib><creatorcontrib>DODARO, CARMINE</creatorcontrib><creatorcontrib>FICHTE, JOHANNES K.</creatorcontrib><creatorcontrib>HECHER, MARKUS</creatorcontrib><creatorcontrib>PHILIPP, TOBIAS</creatorcontrib><creatorcontrib>RATH, JAKOB</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory and practice of logic programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ALVIANO, MARIO</au><au>DODARO, CARMINE</au><au>FICHTE, JOHANNES K.</au><au>HECHER, MARKUS</au><au>PHILIPP, TOBIAS</au><au>RATH, JAKOB</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inconsistency Proofs for ASP: The ASP - DRUPE Format</atitle><jtitle>Theory and practice of logic programming</jtitle><addtitle>Theory and Practice of Logic Programming</addtitle><date>2019-09</date><risdate>2019</risdate><volume>19</volume><issue>5-6</issue><spage>891</spage><epage>907</epage><pages>891-907</pages><issn>1471-0684</issn><eissn>1475-3081</eissn><abstract>Answer Set Programming (ASP) solvers are highly-tuned and complex procedures that implicitly solve the consistency problem, i.e., deciding whether a logic program admits an answer set. Verifying whether a claimed answer set is formally a correct answer set of the program can be decided in polynomial time for (normal) programs. However, it is far from immediate to verify whether a program that is claimed to be inconsistent, indeed does not admit any answer sets. In this paper, we address this problem and develop the new proof format ASP-DRUPE for propositional, disjunctive logic programs, including weight and choice rules. ASP-DRUPE is based on the Reverse Unit Propagation (RUP) format designed for Boolean satisfiability. We establish correctness of ASP-DRUPE and discuss how to integrate it into modern ASP solvers. Later, we provide an implementation of ASP-DRUPE into the wasp solver for normal logic programs.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1471068419000255</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5617-5286</orcidid><orcidid>https://orcid.org/0000-0002-2052-2063</orcidid><orcidid>https://orcid.org/0000-0003-0131-6771</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1471-0684
ispartof Theory and practice of logic programming, 2019-09, Vol.19 (5-6), p.891-907
issn 1471-0684
1475-3081
language eng
recordid cdi_proquest_journals_2300624344
source Cambridge University Press Journals Complete
subjects 35th International Conference on Logic Programming
Boolean algebra
Declarative programming
Format
Logic programming
Logic programs
Mathematical programming
Original Article
Polynomials
Solvers
title Inconsistency Proofs for ASP: The ASP - DRUPE Format
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T12%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inconsistency%20Proofs%20for%20ASP:%20The%20ASP%20-%20DRUPE%20Format&rft.jtitle=Theory%20and%20practice%20of%20logic%20programming&rft.au=ALVIANO,%20MARIO&rft.date=2019-09&rft.volume=19&rft.issue=5-6&rft.spage=891&rft.epage=907&rft.pages=891-907&rft.issn=1471-0684&rft.eissn=1475-3081&rft_id=info:doi/10.1017/S1471068419000255&rft_dat=%3Cproquest_cross%3E2300624344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300624344&rft_id=info:pmid/&rft_cupid=10_1017_S1471068419000255&rfr_iscdi=true