Inconsistency Proofs for ASP: The ASP - DRUPE Format
Answer Set Programming (ASP) solvers are highly-tuned and complex procedures that implicitly solve the consistency problem, i.e., deciding whether a logic program admits an answer set. Verifying whether a claimed answer set is formally a correct answer set of the program can be decided in polynomial...
Gespeichert in:
Veröffentlicht in: | Theory and practice of logic programming 2019-09, Vol.19 (5-6), p.891-907 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 907 |
---|---|
container_issue | 5-6 |
container_start_page | 891 |
container_title | Theory and practice of logic programming |
container_volume | 19 |
creator | ALVIANO, MARIO DODARO, CARMINE FICHTE, JOHANNES K. HECHER, MARKUS PHILIPP, TOBIAS RATH, JAKOB |
description | Answer Set Programming (ASP) solvers are highly-tuned and complex procedures that implicitly solve the consistency problem, i.e., deciding whether a logic program admits an answer set. Verifying whether a claimed answer set is formally a correct answer set of the program can be decided in polynomial time for (normal) programs. However, it is far from immediate to verify whether a program that is claimed to be inconsistent, indeed does not admit any answer sets. In this paper, we address this problem and develop the new proof format ASP-DRUPE for propositional, disjunctive logic programs, including weight and choice rules. ASP-DRUPE is based on the Reverse Unit Propagation (RUP) format designed for Boolean satisfiability. We establish correctness of ASP-DRUPE and discuss how to integrate it into modern ASP solvers. Later, we provide an implementation of ASP-DRUPE into the wasp solver for normal logic programs. |
doi_str_mv | 10.1017/S1471068419000255 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300624344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1471068419000255</cupid><sourcerecordid>2300624344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-54bd40a05092d7ca39d4f930492bed84a1467edb2389067dca7e84f66a9b66d73</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA8-okmU023kpttVCw2Pa8ZDdZ3eJuarI99N-7tQUP4mkeM-97A4-QWwb3DJh6WDJUDGSGTAMAT9MzMuhXaSIgY-c_miWH-yW5inEDwKTgOCA4a0vfxjp2ri33dBG8ryKtfKCj5eKRrj7cQdCEPr2tFxM69aEx3TW5qMxndDenOSTr6WQ1fknmr8-z8WielIKpLkmxsAgGUtDcqtIIbbHSAlDzwtkMDUOpnC24yDRIZUujXIaVlEYXUlolhuTumLsN_mvnYpdv_C60_cucCwDJUSD2LnZ0lcHHGFyVb0PdmLDPGeSHcvI_5fSMODGmKUJt391v9P_UN2i-Yks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300624344</pqid></control><display><type>article</type><title>Inconsistency Proofs for ASP: The ASP - DRUPE Format</title><source>Cambridge University Press Journals Complete</source><creator>ALVIANO, MARIO ; DODARO, CARMINE ; FICHTE, JOHANNES K. ; HECHER, MARKUS ; PHILIPP, TOBIAS ; RATH, JAKOB</creator><creatorcontrib>ALVIANO, MARIO ; DODARO, CARMINE ; FICHTE, JOHANNES K. ; HECHER, MARKUS ; PHILIPP, TOBIAS ; RATH, JAKOB</creatorcontrib><description>Answer Set Programming (ASP) solvers are highly-tuned and complex procedures that implicitly solve the consistency problem, i.e., deciding whether a logic program admits an answer set. Verifying whether a claimed answer set is formally a correct answer set of the program can be decided in polynomial time for (normal) programs. However, it is far from immediate to verify whether a program that is claimed to be inconsistent, indeed does not admit any answer sets. In this paper, we address this problem and develop the new proof format ASP-DRUPE for propositional, disjunctive logic programs, including weight and choice rules. ASP-DRUPE is based on the Reverse Unit Propagation (RUP) format designed for Boolean satisfiability. We establish correctness of ASP-DRUPE and discuss how to integrate it into modern ASP solvers. Later, we provide an implementation of ASP-DRUPE into the wasp solver for normal logic programs.</description><identifier>ISSN: 1471-0684</identifier><identifier>EISSN: 1475-3081</identifier><identifier>DOI: 10.1017/S1471068419000255</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>35th International Conference on Logic Programming ; Boolean algebra ; Declarative programming ; Format ; Logic programming ; Logic programs ; Mathematical programming ; Original Article ; Polynomials ; Solvers</subject><ispartof>Theory and practice of logic programming, 2019-09, Vol.19 (5-6), p.891-907</ispartof><rights>Cambridge University Press 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-54bd40a05092d7ca39d4f930492bed84a1467edb2389067dca7e84f66a9b66d73</citedby><cites>FETCH-LOGICAL-c317t-54bd40a05092d7ca39d4f930492bed84a1467edb2389067dca7e84f66a9b66d73</cites><orcidid>0000-0002-5617-5286 ; 0000-0002-2052-2063 ; 0000-0003-0131-6771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1471068419000255/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>ALVIANO, MARIO</creatorcontrib><creatorcontrib>DODARO, CARMINE</creatorcontrib><creatorcontrib>FICHTE, JOHANNES K.</creatorcontrib><creatorcontrib>HECHER, MARKUS</creatorcontrib><creatorcontrib>PHILIPP, TOBIAS</creatorcontrib><creatorcontrib>RATH, JAKOB</creatorcontrib><title>Inconsistency Proofs for ASP: The ASP - DRUPE Format</title><title>Theory and practice of logic programming</title><addtitle>Theory and Practice of Logic Programming</addtitle><description>Answer Set Programming (ASP) solvers are highly-tuned and complex procedures that implicitly solve the consistency problem, i.e., deciding whether a logic program admits an answer set. Verifying whether a claimed answer set is formally a correct answer set of the program can be decided in polynomial time for (normal) programs. However, it is far from immediate to verify whether a program that is claimed to be inconsistent, indeed does not admit any answer sets. In this paper, we address this problem and develop the new proof format ASP-DRUPE for propositional, disjunctive logic programs, including weight and choice rules. ASP-DRUPE is based on the Reverse Unit Propagation (RUP) format designed for Boolean satisfiability. We establish correctness of ASP-DRUPE and discuss how to integrate it into modern ASP solvers. Later, we provide an implementation of ASP-DRUPE into the wasp solver for normal logic programs.</description><subject>35th International Conference on Logic Programming</subject><subject>Boolean algebra</subject><subject>Declarative programming</subject><subject>Format</subject><subject>Logic programming</subject><subject>Logic programs</subject><subject>Mathematical programming</subject><subject>Original Article</subject><subject>Polynomials</subject><subject>Solvers</subject><issn>1471-0684</issn><issn>1475-3081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wFvA8-okmU023kpttVCw2Pa8ZDdZ3eJuarI99N-7tQUP4mkeM-97A4-QWwb3DJh6WDJUDGSGTAMAT9MzMuhXaSIgY-c_miWH-yW5inEDwKTgOCA4a0vfxjp2ri33dBG8ryKtfKCj5eKRrj7cQdCEPr2tFxM69aEx3TW5qMxndDenOSTr6WQ1fknmr8-z8WielIKpLkmxsAgGUtDcqtIIbbHSAlDzwtkMDUOpnC24yDRIZUujXIaVlEYXUlolhuTumLsN_mvnYpdv_C60_cucCwDJUSD2LnZ0lcHHGFyVb0PdmLDPGeSHcvI_5fSMODGmKUJt391v9P_UN2i-Yks</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>ALVIANO, MARIO</creator><creator>DODARO, CARMINE</creator><creator>FICHTE, JOHANNES K.</creator><creator>HECHER, MARKUS</creator><creator>PHILIPP, TOBIAS</creator><creator>RATH, JAKOB</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5617-5286</orcidid><orcidid>https://orcid.org/0000-0002-2052-2063</orcidid><orcidid>https://orcid.org/0000-0003-0131-6771</orcidid></search><sort><creationdate>201909</creationdate><title>Inconsistency Proofs for ASP: The ASP - DRUPE Format</title><author>ALVIANO, MARIO ; DODARO, CARMINE ; FICHTE, JOHANNES K. ; HECHER, MARKUS ; PHILIPP, TOBIAS ; RATH, JAKOB</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-54bd40a05092d7ca39d4f930492bed84a1467edb2389067dca7e84f66a9b66d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>35th International Conference on Logic Programming</topic><topic>Boolean algebra</topic><topic>Declarative programming</topic><topic>Format</topic><topic>Logic programming</topic><topic>Logic programs</topic><topic>Mathematical programming</topic><topic>Original Article</topic><topic>Polynomials</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ALVIANO, MARIO</creatorcontrib><creatorcontrib>DODARO, CARMINE</creatorcontrib><creatorcontrib>FICHTE, JOHANNES K.</creatorcontrib><creatorcontrib>HECHER, MARKUS</creatorcontrib><creatorcontrib>PHILIPP, TOBIAS</creatorcontrib><creatorcontrib>RATH, JAKOB</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Theory and practice of logic programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ALVIANO, MARIO</au><au>DODARO, CARMINE</au><au>FICHTE, JOHANNES K.</au><au>HECHER, MARKUS</au><au>PHILIPP, TOBIAS</au><au>RATH, JAKOB</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inconsistency Proofs for ASP: The ASP - DRUPE Format</atitle><jtitle>Theory and practice of logic programming</jtitle><addtitle>Theory and Practice of Logic Programming</addtitle><date>2019-09</date><risdate>2019</risdate><volume>19</volume><issue>5-6</issue><spage>891</spage><epage>907</epage><pages>891-907</pages><issn>1471-0684</issn><eissn>1475-3081</eissn><abstract>Answer Set Programming (ASP) solvers are highly-tuned and complex procedures that implicitly solve the consistency problem, i.e., deciding whether a logic program admits an answer set. Verifying whether a claimed answer set is formally a correct answer set of the program can be decided in polynomial time for (normal) programs. However, it is far from immediate to verify whether a program that is claimed to be inconsistent, indeed does not admit any answer sets. In this paper, we address this problem and develop the new proof format ASP-DRUPE for propositional, disjunctive logic programs, including weight and choice rules. ASP-DRUPE is based on the Reverse Unit Propagation (RUP) format designed for Boolean satisfiability. We establish correctness of ASP-DRUPE and discuss how to integrate it into modern ASP solvers. Later, we provide an implementation of ASP-DRUPE into the wasp solver for normal logic programs.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1471068419000255</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5617-5286</orcidid><orcidid>https://orcid.org/0000-0002-2052-2063</orcidid><orcidid>https://orcid.org/0000-0003-0131-6771</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-0684 |
ispartof | Theory and practice of logic programming, 2019-09, Vol.19 (5-6), p.891-907 |
issn | 1471-0684 1475-3081 |
language | eng |
recordid | cdi_proquest_journals_2300624344 |
source | Cambridge University Press Journals Complete |
subjects | 35th International Conference on Logic Programming Boolean algebra Declarative programming Format Logic programming Logic programs Mathematical programming Original Article Polynomials Solvers |
title | Inconsistency Proofs for ASP: The ASP - DRUPE Format |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T12%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inconsistency%20Proofs%20for%20ASP:%20The%20ASP%20-%20DRUPE%20Format&rft.jtitle=Theory%20and%20practice%20of%20logic%20programming&rft.au=ALVIANO,%20MARIO&rft.date=2019-09&rft.volume=19&rft.issue=5-6&rft.spage=891&rft.epage=907&rft.pages=891-907&rft.issn=1471-0684&rft.eissn=1475-3081&rft_id=info:doi/10.1017/S1471068419000255&rft_dat=%3Cproquest_cross%3E2300624344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300624344&rft_id=info:pmid/&rft_cupid=10_1017_S1471068419000255&rfr_iscdi=true |