Trace-free counterfactual communication with a nanophotonic processor
In standard communication information is carried by particles or waves. Counterintuitively, in counterfactual communication particles and information can travel in opposite directions. The quantum Zeno effect allows Bob to transmit a message to Alice by encoding information in particles he never int...
Gespeichert in:
Veröffentlicht in: | npj quantum information 2019-07, Vol.5 (1), p.1-5, Article 61 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | npj quantum information |
container_volume | 5 |
creator | Alonso Calafell, I. Strömberg, T. Arvidsson-Shukur, D. R. M. Rozema, L. A. Saggio, V. Greganti, C. Harris, N. C. Prabhu, M. Carolan, J. Hochberg, M. Baehr-Jones, T. Englund, D. Barnes, C. H. W. Walther, P. |
description | In standard communication information is carried by particles or waves. Counterintuitively, in counterfactual communication particles and information can travel in opposite directions. The quantum Zeno effect allows Bob to transmit a message to Alice by encoding information in particles he never interacts with. A first remarkable protocol for counterfactual communication relied on thousands of ideal optical operations for high success rate performance. Experimental realizations of that protocol have thus employed post-selection to demonstrate counterfactuality. This post-selection, together with arguments concerning a so-called “weak trace” of the particles traveling from Bob to Alice, have led to a discussion regarding the counterfactual nature of the protocol. Here we circumvent these controversies, implementing a new, and fundamentally different, protocol in a programmable nanophotonic processor, based on reconfigurable silicon-on-insulator waveguides that operate at telecom wavelengths. This, together with our telecom single-photon source and highly efficient superconducting nanowire single-photon detectors, provides a versatile and stable platform for a high-fidelity implementation of counterfactual communication with single photons, allowing us to actively tune the number of steps in the Zeno measurement, and achieve a bit error probability below 1%, without post-selection and with a vanishing weak trace. Our demonstration shows how our programmable nanophotonic processor could be applied to more complex counterfactual tasks and quantum information protocols. |
doi_str_mv | 10.1038/s41534-019-0179-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300608046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300608046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-be20be9175e0f0c1c453f116ba926f66b0978276370b1e1d09ff061f2c0e46e93</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWGo_gLcFz9FJspvdHKXUP1DwUs8hGyd2S5vUJIv47U1ZQS8ehplh3nsDP0KuGdwyEN1dqlkjagpMlWoV5WdkxqGRVIquPf8zX5JFSjuAouQdr9mMrDbRWKQuIlY2jD5jdMbm0ezLejiMfrAmD8FXn0PeVqbyxofjNuRQDtUxBosphXhFLpzZJ1z89Dl5fVhtlk90_fL4vLxfUysalWmPHHpUrG0QHFhm60Y4xmRvFJdOyh5U2_FWihZ6huwNlHMgmeMWsJaoxJzcTLnl88eIKetdGKMvLzUXABI6qGVRsUllY0gpotPHOBxM_NIM9AmYnoDpgkGfgBXznPDJk4rWv2P8Tf7f9A3yL211</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300608046</pqid></control><display><type>article</type><title>Trace-free counterfactual communication with a nanophotonic processor</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><creator>Alonso Calafell, I. ; Strömberg, T. ; Arvidsson-Shukur, D. R. M. ; Rozema, L. A. ; Saggio, V. ; Greganti, C. ; Harris, N. C. ; Prabhu, M. ; Carolan, J. ; Hochberg, M. ; Baehr-Jones, T. ; Englund, D. ; Barnes, C. H. W. ; Walther, P.</creator><creatorcontrib>Alonso Calafell, I. ; Strömberg, T. ; Arvidsson-Shukur, D. R. M. ; Rozema, L. A. ; Saggio, V. ; Greganti, C. ; Harris, N. C. ; Prabhu, M. ; Carolan, J. ; Hochberg, M. ; Baehr-Jones, T. ; Englund, D. ; Barnes, C. H. W. ; Walther, P.</creatorcontrib><description>In standard communication information is carried by particles or waves. Counterintuitively, in counterfactual communication particles and information can travel in opposite directions. The quantum Zeno effect allows Bob to transmit a message to Alice by encoding information in particles he never interacts with. A first remarkable protocol for counterfactual communication relied on thousands of ideal optical operations for high success rate performance. Experimental realizations of that protocol have thus employed post-selection to demonstrate counterfactuality. This post-selection, together with arguments concerning a so-called “weak trace” of the particles traveling from Bob to Alice, have led to a discussion regarding the counterfactual nature of the protocol. Here we circumvent these controversies, implementing a new, and fundamentally different, protocol in a programmable nanophotonic processor, based on reconfigurable silicon-on-insulator waveguides that operate at telecom wavelengths. This, together with our telecom single-photon source and highly efficient superconducting nanowire single-photon detectors, provides a versatile and stable platform for a high-fidelity implementation of counterfactual communication with single photons, allowing us to actively tune the number of steps in the Zeno measurement, and achieve a bit error probability below 1%, without post-selection and with a vanishing weak trace. Our demonstration shows how our programmable nanophotonic processor could be applied to more complex counterfactual tasks and quantum information protocols.</description><identifier>ISSN: 2056-6387</identifier><identifier>EISSN: 2056-6387</identifier><identifier>DOI: 10.1038/s41534-019-0179-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/2802 ; 639/766/483/3925 ; 639/766/483/481 ; Classical and Quantum Gravitation ; Communication ; Nanotechnology ; Photons ; Physics ; Physics and Astronomy ; Protocol ; Quantum Computing ; Quantum Field Theories ; Quantum Information Technology ; Quantum Physics ; Relativity Theory ; Spintronics ; String Theory</subject><ispartof>npj quantum information, 2019-07, Vol.5 (1), p.1-5, Article 61</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-be20be9175e0f0c1c453f116ba926f66b0978276370b1e1d09ff061f2c0e46e93</citedby><cites>FETCH-LOGICAL-c359t-be20be9175e0f0c1c453f116ba926f66b0978276370b1e1d09ff061f2c0e46e93</cites><orcidid>0000-0002-1043-3489 ; 0000-0002-4964-817X ; 0000-0002-8430-5279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41534-019-0179-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41534-019-0179-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,27905,27906,41101,42170,51557</link.rule.ids></links><search><creatorcontrib>Alonso Calafell, I.</creatorcontrib><creatorcontrib>Strömberg, T.</creatorcontrib><creatorcontrib>Arvidsson-Shukur, D. R. M.</creatorcontrib><creatorcontrib>Rozema, L. A.</creatorcontrib><creatorcontrib>Saggio, V.</creatorcontrib><creatorcontrib>Greganti, C.</creatorcontrib><creatorcontrib>Harris, N. C.</creatorcontrib><creatorcontrib>Prabhu, M.</creatorcontrib><creatorcontrib>Carolan, J.</creatorcontrib><creatorcontrib>Hochberg, M.</creatorcontrib><creatorcontrib>Baehr-Jones, T.</creatorcontrib><creatorcontrib>Englund, D.</creatorcontrib><creatorcontrib>Barnes, C. H. W.</creatorcontrib><creatorcontrib>Walther, P.</creatorcontrib><title>Trace-free counterfactual communication with a nanophotonic processor</title><title>npj quantum information</title><addtitle>npj Quantum Inf</addtitle><description>In standard communication information is carried by particles or waves. Counterintuitively, in counterfactual communication particles and information can travel in opposite directions. The quantum Zeno effect allows Bob to transmit a message to Alice by encoding information in particles he never interacts with. A first remarkable protocol for counterfactual communication relied on thousands of ideal optical operations for high success rate performance. Experimental realizations of that protocol have thus employed post-selection to demonstrate counterfactuality. This post-selection, together with arguments concerning a so-called “weak trace” of the particles traveling from Bob to Alice, have led to a discussion regarding the counterfactual nature of the protocol. Here we circumvent these controversies, implementing a new, and fundamentally different, protocol in a programmable nanophotonic processor, based on reconfigurable silicon-on-insulator waveguides that operate at telecom wavelengths. This, together with our telecom single-photon source and highly efficient superconducting nanowire single-photon detectors, provides a versatile and stable platform for a high-fidelity implementation of counterfactual communication with single photons, allowing us to actively tune the number of steps in the Zeno measurement, and achieve a bit error probability below 1%, without post-selection and with a vanishing weak trace. Our demonstration shows how our programmable nanophotonic processor could be applied to more complex counterfactual tasks and quantum information protocols.</description><subject>639/766/483/2802</subject><subject>639/766/483/3925</subject><subject>639/766/483/481</subject><subject>Classical and Quantum Gravitation</subject><subject>Communication</subject><subject>Nanotechnology</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Protocol</subject><subject>Quantum Computing</subject><subject>Quantum Field Theories</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Spintronics</subject><subject>String Theory</subject><issn>2056-6387</issn><issn>2056-6387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMoWGo_gLcFz9FJspvdHKXUP1DwUs8hGyd2S5vUJIv47U1ZQS8ehplh3nsDP0KuGdwyEN1dqlkjagpMlWoV5WdkxqGRVIquPf8zX5JFSjuAouQdr9mMrDbRWKQuIlY2jD5jdMbm0ezLejiMfrAmD8FXn0PeVqbyxofjNuRQDtUxBosphXhFLpzZJ1z89Dl5fVhtlk90_fL4vLxfUysalWmPHHpUrG0QHFhm60Y4xmRvFJdOyh5U2_FWihZ6huwNlHMgmeMWsJaoxJzcTLnl88eIKetdGKMvLzUXABI6qGVRsUllY0gpotPHOBxM_NIM9AmYnoDpgkGfgBXznPDJk4rWv2P8Tf7f9A3yL211</recordid><startdate>20190723</startdate><enddate>20190723</enddate><creator>Alonso Calafell, I.</creator><creator>Strömberg, T.</creator><creator>Arvidsson-Shukur, D. R. M.</creator><creator>Rozema, L. A.</creator><creator>Saggio, V.</creator><creator>Greganti, C.</creator><creator>Harris, N. C.</creator><creator>Prabhu, M.</creator><creator>Carolan, J.</creator><creator>Hochberg, M.</creator><creator>Baehr-Jones, T.</creator><creator>Englund, D.</creator><creator>Barnes, C. H. W.</creator><creator>Walther, P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1043-3489</orcidid><orcidid>https://orcid.org/0000-0002-4964-817X</orcidid><orcidid>https://orcid.org/0000-0002-8430-5279</orcidid></search><sort><creationdate>20190723</creationdate><title>Trace-free counterfactual communication with a nanophotonic processor</title><author>Alonso Calafell, I. ; Strömberg, T. ; Arvidsson-Shukur, D. R. M. ; Rozema, L. A. ; Saggio, V. ; Greganti, C. ; Harris, N. C. ; Prabhu, M. ; Carolan, J. ; Hochberg, M. ; Baehr-Jones, T. ; Englund, D. ; Barnes, C. H. W. ; Walther, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-be20be9175e0f0c1c453f116ba926f66b0978276370b1e1d09ff061f2c0e46e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/766/483/2802</topic><topic>639/766/483/3925</topic><topic>639/766/483/481</topic><topic>Classical and Quantum Gravitation</topic><topic>Communication</topic><topic>Nanotechnology</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Protocol</topic><topic>Quantum Computing</topic><topic>Quantum Field Theories</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Spintronics</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alonso Calafell, I.</creatorcontrib><creatorcontrib>Strömberg, T.</creatorcontrib><creatorcontrib>Arvidsson-Shukur, D. R. M.</creatorcontrib><creatorcontrib>Rozema, L. A.</creatorcontrib><creatorcontrib>Saggio, V.</creatorcontrib><creatorcontrib>Greganti, C.</creatorcontrib><creatorcontrib>Harris, N. C.</creatorcontrib><creatorcontrib>Prabhu, M.</creatorcontrib><creatorcontrib>Carolan, J.</creatorcontrib><creatorcontrib>Hochberg, M.</creatorcontrib><creatorcontrib>Baehr-Jones, T.</creatorcontrib><creatorcontrib>Englund, D.</creatorcontrib><creatorcontrib>Barnes, C. H. W.</creatorcontrib><creatorcontrib>Walther, P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj quantum information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonso Calafell, I.</au><au>Strömberg, T.</au><au>Arvidsson-Shukur, D. R. M.</au><au>Rozema, L. A.</au><au>Saggio, V.</au><au>Greganti, C.</au><au>Harris, N. C.</au><au>Prabhu, M.</au><au>Carolan, J.</au><au>Hochberg, M.</au><au>Baehr-Jones, T.</au><au>Englund, D.</au><au>Barnes, C. H. W.</au><au>Walther, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trace-free counterfactual communication with a nanophotonic processor</atitle><jtitle>npj quantum information</jtitle><stitle>npj Quantum Inf</stitle><date>2019-07-23</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><artnum>61</artnum><issn>2056-6387</issn><eissn>2056-6387</eissn><abstract>In standard communication information is carried by particles or waves. Counterintuitively, in counterfactual communication particles and information can travel in opposite directions. The quantum Zeno effect allows Bob to transmit a message to Alice by encoding information in particles he never interacts with. A first remarkable protocol for counterfactual communication relied on thousands of ideal optical operations for high success rate performance. Experimental realizations of that protocol have thus employed post-selection to demonstrate counterfactuality. This post-selection, together with arguments concerning a so-called “weak trace” of the particles traveling from Bob to Alice, have led to a discussion regarding the counterfactual nature of the protocol. Here we circumvent these controversies, implementing a new, and fundamentally different, protocol in a programmable nanophotonic processor, based on reconfigurable silicon-on-insulator waveguides that operate at telecom wavelengths. This, together with our telecom single-photon source and highly efficient superconducting nanowire single-photon detectors, provides a versatile and stable platform for a high-fidelity implementation of counterfactual communication with single photons, allowing us to actively tune the number of steps in the Zeno measurement, and achieve a bit error probability below 1%, without post-selection and with a vanishing weak trace. Our demonstration shows how our programmable nanophotonic processor could be applied to more complex counterfactual tasks and quantum information protocols.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41534-019-0179-2</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1043-3489</orcidid><orcidid>https://orcid.org/0000-0002-4964-817X</orcidid><orcidid>https://orcid.org/0000-0002-8430-5279</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2056-6387 |
ispartof | npj quantum information, 2019-07, Vol.5 (1), p.1-5, Article 61 |
issn | 2056-6387 2056-6387 |
language | eng |
recordid | cdi_proquest_journals_2300608046 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free |
subjects | 639/766/483/2802 639/766/483/3925 639/766/483/481 Classical and Quantum Gravitation Communication Nanotechnology Photons Physics Physics and Astronomy Protocol Quantum Computing Quantum Field Theories Quantum Information Technology Quantum Physics Relativity Theory Spintronics String Theory |
title | Trace-free counterfactual communication with a nanophotonic processor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trace-free%20counterfactual%20communication%20with%20a%20nanophotonic%20processor&rft.jtitle=npj%20quantum%20information&rft.au=Alonso%20Calafell,%20I.&rft.date=2019-07-23&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.artnum=61&rft.issn=2056-6387&rft.eissn=2056-6387&rft_id=info:doi/10.1038/s41534-019-0179-2&rft_dat=%3Cproquest_cross%3E2300608046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300608046&rft_id=info:pmid/&rfr_iscdi=true |