Pressure-dipole solutions of the thin-film equation

We investigate self-similar sign-changing solutions to the thin-film equation, ht = −(|h|nhxxx)x, on the semi-infinite domain x ≥ 0 with zero-pressure-type boundary conditions h = hxx = 0 imposed at the origin. In particular, we identify classes of first- and second-kind compactly supported self-sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of applied mathematics 2019-04, Vol.30 (2), p.358-399
Hauptverfasser: BOWEN, M., WITELSKI, T. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 399
container_issue 2
container_start_page 358
container_title European journal of applied mathematics
container_volume 30
creator BOWEN, M.
WITELSKI, T. P.
description We investigate self-similar sign-changing solutions to the thin-film equation, ht = −(|h|nhxxx)x, on the semi-infinite domain x ≥ 0 with zero-pressure-type boundary conditions h = hxx = 0 imposed at the origin. In particular, we identify classes of first- and second-kind compactly supported self-similar solutions (with a free-boundary x = s(t) = Ltβ) and consider how these solutions depend on the mobility exponent n; multiple solutions can exist with the same number of sign changes. For n = 0, we also construct first-kind self-similar solutions on the entire half-line x ≥ 0 and show that they act as limiting cases for sequences of compactly supported solutions in the limit of infinitely many sign changes. In addition, at n = 1, we highlight accumulation point-like behaviour of sign-changes local to the moving interface x = s(t). We conclude with a numerical investigation of solutions to the full time-dependent partial differential equation (based on a non-local regularisation of the mobility coefficient) and discuss the computational results in relation to the self-similar solutions.
doi_str_mv 10.1017/S095679251800013X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300607922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S095679251800013X</cupid><sourcerecordid>2300607922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-6016644c2819b28645c6a8200c0e0b502ae81197ad6d0b5a0cb2c6c9a62f5c433</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqJgXf0B3gqeozN5tTnK4gsWFFTwVtI01S5t003ag__ell3wIB6GYfhezEfIJcI1AmY3r6ClyjSTmAMA8o8jkqBQmgrB5DFJFpgu-Ck5i3G7UCDTCeEvwcU4BUerZvCtS6Nvp7HxfUx9nY5fbp6mp3XTdqnbTWaBzslJbdroLg57Rd7v797Wj3Tz_PC0vt1QyzEbqQJUSgjLctQly5WQVpmcAVhwUEpgxuWIOjOVqubbgC2ZVVYbxWppBecrcrX3HYLfTS6OxdZPoZ8jC8YB1PwAYzML9ywbfIzB1cUQms6E7wKhWLop_nQza_hBY7oyNNWn-7X-X_UDgFtkhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300607922</pqid></control><display><type>article</type><title>Pressure-dipole solutions of the thin-film equation</title><source>Cambridge Journals Online</source><creator>BOWEN, M. ; WITELSKI, T. P.</creator><creatorcontrib>BOWEN, M. ; WITELSKI, T. P.</creatorcontrib><description>We investigate self-similar sign-changing solutions to the thin-film equation, ht = −(|h|nhxxx)x, on the semi-infinite domain x ≥ 0 with zero-pressure-type boundary conditions h = hxx = 0 imposed at the origin. In particular, we identify classes of first- and second-kind compactly supported self-similar solutions (with a free-boundary x = s(t) = Ltβ) and consider how these solutions depend on the mobility exponent n; multiple solutions can exist with the same number of sign changes. For n = 0, we also construct first-kind self-similar solutions on the entire half-line x ≥ 0 and show that they act as limiting cases for sequences of compactly supported solutions in the limit of infinitely many sign changes. In addition, at n = 1, we highlight accumulation point-like behaviour of sign-changes local to the moving interface x = s(t). We conclude with a numerical investigation of solutions to the full time-dependent partial differential equation (based on a non-local regularisation of the mobility coefficient) and discuss the computational results in relation to the self-similar solutions.</description><identifier>ISSN: 0956-7925</identifier><identifier>EISSN: 1469-4425</identifier><identifier>DOI: 10.1017/S095679251800013X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Applied mathematics ; Boundary conditions ; Dipoles ; Partial differential equations ; Regularization ; Self-similarity ; Thin films ; Time dependence</subject><ispartof>European journal of applied mathematics, 2019-04, Vol.30 (2), p.358-399</ispartof><rights>Copyright © Cambridge University Press 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-6016644c2819b28645c6a8200c0e0b502ae81197ad6d0b5a0cb2c6c9a62f5c433</citedby><cites>FETCH-LOGICAL-c317t-6016644c2819b28645c6a8200c0e0b502ae81197ad6d0b5a0cb2c6c9a62f5c433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S095679251800013X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,781,785,27926,27927,55630</link.rule.ids></links><search><creatorcontrib>BOWEN, M.</creatorcontrib><creatorcontrib>WITELSKI, T. P.</creatorcontrib><title>Pressure-dipole solutions of the thin-film equation</title><title>European journal of applied mathematics</title><addtitle>Eur. J. Appl. Math</addtitle><description>We investigate self-similar sign-changing solutions to the thin-film equation, ht = −(|h|nhxxx)x, on the semi-infinite domain x ≥ 0 with zero-pressure-type boundary conditions h = hxx = 0 imposed at the origin. In particular, we identify classes of first- and second-kind compactly supported self-similar solutions (with a free-boundary x = s(t) = Ltβ) and consider how these solutions depend on the mobility exponent n; multiple solutions can exist with the same number of sign changes. For n = 0, we also construct first-kind self-similar solutions on the entire half-line x ≥ 0 and show that they act as limiting cases for sequences of compactly supported solutions in the limit of infinitely many sign changes. In addition, at n = 1, we highlight accumulation point-like behaviour of sign-changes local to the moving interface x = s(t). We conclude with a numerical investigation of solutions to the full time-dependent partial differential equation (based on a non-local regularisation of the mobility coefficient) and discuss the computational results in relation to the self-similar solutions.</description><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Dipoles</subject><subject>Partial differential equations</subject><subject>Regularization</subject><subject>Self-similarity</subject><subject>Thin films</subject><subject>Time dependence</subject><issn>0956-7925</issn><issn>1469-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UEtLxDAQDqJgXf0B3gqeozN5tTnK4gsWFFTwVtI01S5t003ag__ell3wIB6GYfhezEfIJcI1AmY3r6ClyjSTmAMA8o8jkqBQmgrB5DFJFpgu-Ck5i3G7UCDTCeEvwcU4BUerZvCtS6Nvp7HxfUx9nY5fbp6mp3XTdqnbTWaBzslJbdroLg57Rd7v797Wj3Tz_PC0vt1QyzEbqQJUSgjLctQly5WQVpmcAVhwUEpgxuWIOjOVqubbgC2ZVVYbxWppBecrcrX3HYLfTS6OxdZPoZ8jC8YB1PwAYzML9ywbfIzB1cUQms6E7wKhWLop_nQza_hBY7oyNNWn-7X-X_UDgFtkhw</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>BOWEN, M.</creator><creator>WITELSKI, T. P.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>201904</creationdate><title>Pressure-dipole solutions of the thin-film equation</title><author>BOWEN, M. ; WITELSKI, T. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-6016644c2819b28645c6a8200c0e0b502ae81197ad6d0b5a0cb2c6c9a62f5c433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Dipoles</topic><topic>Partial differential equations</topic><topic>Regularization</topic><topic>Self-similarity</topic><topic>Thin films</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOWEN, M.</creatorcontrib><creatorcontrib>WITELSKI, T. P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>European journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOWEN, M.</au><au>WITELSKI, T. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pressure-dipole solutions of the thin-film equation</atitle><jtitle>European journal of applied mathematics</jtitle><addtitle>Eur. J. Appl. Math</addtitle><date>2019-04</date><risdate>2019</risdate><volume>30</volume><issue>2</issue><spage>358</spage><epage>399</epage><pages>358-399</pages><issn>0956-7925</issn><eissn>1469-4425</eissn><abstract>We investigate self-similar sign-changing solutions to the thin-film equation, ht = −(|h|nhxxx)x, on the semi-infinite domain x ≥ 0 with zero-pressure-type boundary conditions h = hxx = 0 imposed at the origin. In particular, we identify classes of first- and second-kind compactly supported self-similar solutions (with a free-boundary x = s(t) = Ltβ) and consider how these solutions depend on the mobility exponent n; multiple solutions can exist with the same number of sign changes. For n = 0, we also construct first-kind self-similar solutions on the entire half-line x ≥ 0 and show that they act as limiting cases for sequences of compactly supported solutions in the limit of infinitely many sign changes. In addition, at n = 1, we highlight accumulation point-like behaviour of sign-changes local to the moving interface x = s(t). We conclude with a numerical investigation of solutions to the full time-dependent partial differential equation (based on a non-local regularisation of the mobility coefficient) and discuss the computational results in relation to the self-similar solutions.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S095679251800013X</doi><tpages>42</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-7925
ispartof European journal of applied mathematics, 2019-04, Vol.30 (2), p.358-399
issn 0956-7925
1469-4425
language eng
recordid cdi_proquest_journals_2300607922
source Cambridge Journals Online
subjects Applied mathematics
Boundary conditions
Dipoles
Partial differential equations
Regularization
Self-similarity
Thin films
Time dependence
title Pressure-dipole solutions of the thin-film equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pressure-dipole%20solutions%20of%20the%20thin-film%20equation&rft.jtitle=European%20journal%20of%20applied%20mathematics&rft.au=BOWEN,%20M.&rft.date=2019-04&rft.volume=30&rft.issue=2&rft.spage=358&rft.epage=399&rft.pages=358-399&rft.issn=0956-7925&rft.eissn=1469-4425&rft_id=info:doi/10.1017/S095679251800013X&rft_dat=%3Cproquest_cross%3E2300607922%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300607922&rft_id=info:pmid/&rft_cupid=10_1017_S095679251800013X&rfr_iscdi=true