Interfacial Charge Field in Hierarchical Yolk–Shell Nanocapsule Enables Efficient Immobilization and Catalysis of Polysulfides Conversion

Inhibiting the shuttle effect of lithium polysulfides and accelerating their conversion kinetics are crucial for the development of high‐performance lithium–sulfur (Li–S) batteries. Herein, a modified template method is proposed to synthesize the robust yolk–shell sulfur host that is constructed by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2019-10, Vol.9 (37), p.n/a
Hauptverfasser: Liu, Handing, Chen, Ziliang, Zhou, Lin, Pei, Ke, Xu, Pingdi, Xin, Linshen, Zeng, Qingwen, Zhang, Jie, Wu, Renbing, Fang, Fang, Che, Renchao, Sun, Dalin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 37
container_start_page
container_title Advanced energy materials
container_volume 9
creator Liu, Handing
Chen, Ziliang
Zhou, Lin
Pei, Ke
Xu, Pingdi
Xin, Linshen
Zeng, Qingwen
Zhang, Jie
Wu, Renbing
Fang, Fang
Che, Renchao
Sun, Dalin
description Inhibiting the shuttle effect of lithium polysulfides and accelerating their conversion kinetics are crucial for the development of high‐performance lithium–sulfur (Li–S) batteries. Herein, a modified template method is proposed to synthesize the robust yolk–shell sulfur host that is constructed by enveloping dispersive Fe2O3 nanoparticles within Mn3O4 nanosheet‐grafted hollow N‐doped porous carbon capsules (Fe2O3@N‐PC/Mn3O4‐S). When applied as a cathode for Li–S batteries, the as‐prepared Fe2O3@N‐PC/Mn3O4‐S can deliver capacities as high as 1122 mAh g−1 after 200 cycles at 0.5 C and 639 mAh g−1 after 1500 cycles at 10 C, respectively. Remarkably, even as the areal sulfur loading is increased to 5.1 mg cm−2, the cathode can still maintain a high areal specific capacity of 5.08 mAh cm−2 with a fading rate of only 0.076% per cycle over 100 cycles at 0.1 C. By a further combination analysis of electron holography and electron energy loss spectroscopy, the outstanding performance is revealed to be mainly traced to the oxygen‐vacancy‐induced interfacial charge field, which immobilizes and catalyzes the conversion of lithium polysulfides, assuring low polarization, fleet redox reaction kinetics, and sufficient utilization of sulfur. These new findings may shed light on the dependence of electrochemical performance on the heterostructure of sulfur hosts. A modified template method is employed to synthesize the robust yolk–shell sulfur host that is constructed by enveloping dispersive Fe2O3 nanoparticles within Mn3O4 nanosheet‐grafted hollow N‐doped porous carbon capsules, which generates the oxygen‐vacancy‐induced interfacial charge field, greatly immobilizing and catalyzing the conversion of lithium polysulfides, thus assuring the low polarization, fast redox reaction kinetics, and sufficient utilization of sulfur.
doi_str_mv 10.1002/aenm.201901667
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300515468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300515468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3567-6f3610020744720e8b284f186518fb8341b3db2a969b3859dddcd5b63e6637c43</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EElXpymyJucWOHScZqyillUpBAgamyHFs6uLaxU5AZWJn5B_yS0hVVEZuuZPuffd0D4BzjEYYoeiSS7seRQhnCDOWHIEeZpgOWUrR8WEm0SkYhLBCXdEMI0J64HNmG-kVF5obmC-5f5JwoqWpobZwqqXnXiy16JaPzjx_f3zdLaUxcMGtE3wTWiNhYXllZICFUlpoaRs4W69dpY1-5412FnJbw5w33GyDDtApeOu6sTVK1x2WO_sqfeiEZ-BEcRPk4Lf3wcOkuM-nw_nN1Swfz4eCxCwZMkXY7meUUJpESKZVlFKFUxbjVFUpobgidRXxjGUVSeOsrmtRxxUjkjGSCEr64GJ_d-PdSytDU65c621nWUYEoRjHtAurD0Z7lfAuBC9VufF6zf22xKjc-Ze7zMtD5h2Q7YE3beT2H3U5LhbXf-wP64CHuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300515468</pqid></control><display><type>article</type><title>Interfacial Charge Field in Hierarchical Yolk–Shell Nanocapsule Enables Efficient Immobilization and Catalysis of Polysulfides Conversion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Handing ; Chen, Ziliang ; Zhou, Lin ; Pei, Ke ; Xu, Pingdi ; Xin, Linshen ; Zeng, Qingwen ; Zhang, Jie ; Wu, Renbing ; Fang, Fang ; Che, Renchao ; Sun, Dalin</creator><creatorcontrib>Liu, Handing ; Chen, Ziliang ; Zhou, Lin ; Pei, Ke ; Xu, Pingdi ; Xin, Linshen ; Zeng, Qingwen ; Zhang, Jie ; Wu, Renbing ; Fang, Fang ; Che, Renchao ; Sun, Dalin</creatorcontrib><description>Inhibiting the shuttle effect of lithium polysulfides and accelerating their conversion kinetics are crucial for the development of high‐performance lithium–sulfur (Li–S) batteries. Herein, a modified template method is proposed to synthesize the robust yolk–shell sulfur host that is constructed by enveloping dispersive Fe2O3 nanoparticles within Mn3O4 nanosheet‐grafted hollow N‐doped porous carbon capsules (Fe2O3@N‐PC/Mn3O4‐S). When applied as a cathode for Li–S batteries, the as‐prepared Fe2O3@N‐PC/Mn3O4‐S can deliver capacities as high as 1122 mAh g−1 after 200 cycles at 0.5 C and 639 mAh g−1 after 1500 cycles at 10 C, respectively. Remarkably, even as the areal sulfur loading is increased to 5.1 mg cm−2, the cathode can still maintain a high areal specific capacity of 5.08 mAh cm−2 with a fading rate of only 0.076% per cycle over 100 cycles at 0.1 C. By a further combination analysis of electron holography and electron energy loss spectroscopy, the outstanding performance is revealed to be mainly traced to the oxygen‐vacancy‐induced interfacial charge field, which immobilizes and catalyzes the conversion of lithium polysulfides, assuring low polarization, fleet redox reaction kinetics, and sufficient utilization of sulfur. These new findings may shed light on the dependence of electrochemical performance on the heterostructure of sulfur hosts. A modified template method is employed to synthesize the robust yolk–shell sulfur host that is constructed by enveloping dispersive Fe2O3 nanoparticles within Mn3O4 nanosheet‐grafted hollow N‐doped porous carbon capsules, which generates the oxygen‐vacancy‐induced interfacial charge field, greatly immobilizing and catalyzing the conversion of lithium polysulfides, thus assuring the low polarization, fast redox reaction kinetics, and sufficient utilization of sulfur.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201901667</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>catalysis ; Cathodes ; charge field ; Conversion ; Dependence ; Electrochemical analysis ; Electrode polarization ; Electron energy loss spectroscopy ; Energy dissipation ; Heterostructures ; Holography ; Lithium ; Lithium sulfur batteries ; Manganese oxides ; Nanoparticles ; Polysulfides ; Reaction kinetics ; Sulfur ; sulfur cathodes ; yolk–shell</subject><ispartof>Advanced energy materials, 2019-10, Vol.9 (37), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3567-6f3610020744720e8b284f186518fb8341b3db2a969b3859dddcd5b63e6637c43</citedby><cites>FETCH-LOGICAL-c3567-6f3610020744720e8b284f186518fb8341b3db2a969b3859dddcd5b63e6637c43</cites><orcidid>0000-0002-6583-7114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201901667$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201901667$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Liu, Handing</creatorcontrib><creatorcontrib>Chen, Ziliang</creatorcontrib><creatorcontrib>Zhou, Lin</creatorcontrib><creatorcontrib>Pei, Ke</creatorcontrib><creatorcontrib>Xu, Pingdi</creatorcontrib><creatorcontrib>Xin, Linshen</creatorcontrib><creatorcontrib>Zeng, Qingwen</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wu, Renbing</creatorcontrib><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Che, Renchao</creatorcontrib><creatorcontrib>Sun, Dalin</creatorcontrib><title>Interfacial Charge Field in Hierarchical Yolk–Shell Nanocapsule Enables Efficient Immobilization and Catalysis of Polysulfides Conversion</title><title>Advanced energy materials</title><description>Inhibiting the shuttle effect of lithium polysulfides and accelerating their conversion kinetics are crucial for the development of high‐performance lithium–sulfur (Li–S) batteries. Herein, a modified template method is proposed to synthesize the robust yolk–shell sulfur host that is constructed by enveloping dispersive Fe2O3 nanoparticles within Mn3O4 nanosheet‐grafted hollow N‐doped porous carbon capsules (Fe2O3@N‐PC/Mn3O4‐S). When applied as a cathode for Li–S batteries, the as‐prepared Fe2O3@N‐PC/Mn3O4‐S can deliver capacities as high as 1122 mAh g−1 after 200 cycles at 0.5 C and 639 mAh g−1 after 1500 cycles at 10 C, respectively. Remarkably, even as the areal sulfur loading is increased to 5.1 mg cm−2, the cathode can still maintain a high areal specific capacity of 5.08 mAh cm−2 with a fading rate of only 0.076% per cycle over 100 cycles at 0.1 C. By a further combination analysis of electron holography and electron energy loss spectroscopy, the outstanding performance is revealed to be mainly traced to the oxygen‐vacancy‐induced interfacial charge field, which immobilizes and catalyzes the conversion of lithium polysulfides, assuring low polarization, fleet redox reaction kinetics, and sufficient utilization of sulfur. These new findings may shed light on the dependence of electrochemical performance on the heterostructure of sulfur hosts. A modified template method is employed to synthesize the robust yolk–shell sulfur host that is constructed by enveloping dispersive Fe2O3 nanoparticles within Mn3O4 nanosheet‐grafted hollow N‐doped porous carbon capsules, which generates the oxygen‐vacancy‐induced interfacial charge field, greatly immobilizing and catalyzing the conversion of lithium polysulfides, thus assuring the low polarization, fast redox reaction kinetics, and sufficient utilization of sulfur.</description><subject>catalysis</subject><subject>Cathodes</subject><subject>charge field</subject><subject>Conversion</subject><subject>Dependence</subject><subject>Electrochemical analysis</subject><subject>Electrode polarization</subject><subject>Electron energy loss spectroscopy</subject><subject>Energy dissipation</subject><subject>Heterostructures</subject><subject>Holography</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Manganese oxides</subject><subject>Nanoparticles</subject><subject>Polysulfides</subject><subject>Reaction kinetics</subject><subject>Sulfur</subject><subject>sulfur cathodes</subject><subject>yolk–shell</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EElXpymyJucWOHScZqyillUpBAgamyHFs6uLaxU5AZWJn5B_yS0hVVEZuuZPuffd0D4BzjEYYoeiSS7seRQhnCDOWHIEeZpgOWUrR8WEm0SkYhLBCXdEMI0J64HNmG-kVF5obmC-5f5JwoqWpobZwqqXnXiy16JaPzjx_f3zdLaUxcMGtE3wTWiNhYXllZICFUlpoaRs4W69dpY1-5412FnJbw5w33GyDDtApeOu6sTVK1x2WO_sqfeiEZ-BEcRPk4Lf3wcOkuM-nw_nN1Swfz4eCxCwZMkXY7meUUJpESKZVlFKFUxbjVFUpobgidRXxjGUVSeOsrmtRxxUjkjGSCEr64GJ_d-PdSytDU65c621nWUYEoRjHtAurD0Z7lfAuBC9VufF6zf22xKjc-Ze7zMtD5h2Q7YE3beT2H3U5LhbXf-wP64CHuw</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Liu, Handing</creator><creator>Chen, Ziliang</creator><creator>Zhou, Lin</creator><creator>Pei, Ke</creator><creator>Xu, Pingdi</creator><creator>Xin, Linshen</creator><creator>Zeng, Qingwen</creator><creator>Zhang, Jie</creator><creator>Wu, Renbing</creator><creator>Fang, Fang</creator><creator>Che, Renchao</creator><creator>Sun, Dalin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6583-7114</orcidid></search><sort><creationdate>20191001</creationdate><title>Interfacial Charge Field in Hierarchical Yolk–Shell Nanocapsule Enables Efficient Immobilization and Catalysis of Polysulfides Conversion</title><author>Liu, Handing ; Chen, Ziliang ; Zhou, Lin ; Pei, Ke ; Xu, Pingdi ; Xin, Linshen ; Zeng, Qingwen ; Zhang, Jie ; Wu, Renbing ; Fang, Fang ; Che, Renchao ; Sun, Dalin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3567-6f3610020744720e8b284f186518fb8341b3db2a969b3859dddcd5b63e6637c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>catalysis</topic><topic>Cathodes</topic><topic>charge field</topic><topic>Conversion</topic><topic>Dependence</topic><topic>Electrochemical analysis</topic><topic>Electrode polarization</topic><topic>Electron energy loss spectroscopy</topic><topic>Energy dissipation</topic><topic>Heterostructures</topic><topic>Holography</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Manganese oxides</topic><topic>Nanoparticles</topic><topic>Polysulfides</topic><topic>Reaction kinetics</topic><topic>Sulfur</topic><topic>sulfur cathodes</topic><topic>yolk–shell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Handing</creatorcontrib><creatorcontrib>Chen, Ziliang</creatorcontrib><creatorcontrib>Zhou, Lin</creatorcontrib><creatorcontrib>Pei, Ke</creatorcontrib><creatorcontrib>Xu, Pingdi</creatorcontrib><creatorcontrib>Xin, Linshen</creatorcontrib><creatorcontrib>Zeng, Qingwen</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wu, Renbing</creatorcontrib><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Che, Renchao</creatorcontrib><creatorcontrib>Sun, Dalin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Handing</au><au>Chen, Ziliang</au><au>Zhou, Lin</au><au>Pei, Ke</au><au>Xu, Pingdi</au><au>Xin, Linshen</au><au>Zeng, Qingwen</au><au>Zhang, Jie</au><au>Wu, Renbing</au><au>Fang, Fang</au><au>Che, Renchao</au><au>Sun, Dalin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Charge Field in Hierarchical Yolk–Shell Nanocapsule Enables Efficient Immobilization and Catalysis of Polysulfides Conversion</atitle><jtitle>Advanced energy materials</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>9</volume><issue>37</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Inhibiting the shuttle effect of lithium polysulfides and accelerating their conversion kinetics are crucial for the development of high‐performance lithium–sulfur (Li–S) batteries. Herein, a modified template method is proposed to synthesize the robust yolk–shell sulfur host that is constructed by enveloping dispersive Fe2O3 nanoparticles within Mn3O4 nanosheet‐grafted hollow N‐doped porous carbon capsules (Fe2O3@N‐PC/Mn3O4‐S). When applied as a cathode for Li–S batteries, the as‐prepared Fe2O3@N‐PC/Mn3O4‐S can deliver capacities as high as 1122 mAh g−1 after 200 cycles at 0.5 C and 639 mAh g−1 after 1500 cycles at 10 C, respectively. Remarkably, even as the areal sulfur loading is increased to 5.1 mg cm−2, the cathode can still maintain a high areal specific capacity of 5.08 mAh cm−2 with a fading rate of only 0.076% per cycle over 100 cycles at 0.1 C. By a further combination analysis of electron holography and electron energy loss spectroscopy, the outstanding performance is revealed to be mainly traced to the oxygen‐vacancy‐induced interfacial charge field, which immobilizes and catalyzes the conversion of lithium polysulfides, assuring low polarization, fleet redox reaction kinetics, and sufficient utilization of sulfur. These new findings may shed light on the dependence of electrochemical performance on the heterostructure of sulfur hosts. A modified template method is employed to synthesize the robust yolk–shell sulfur host that is constructed by enveloping dispersive Fe2O3 nanoparticles within Mn3O4 nanosheet‐grafted hollow N‐doped porous carbon capsules, which generates the oxygen‐vacancy‐induced interfacial charge field, greatly immobilizing and catalyzing the conversion of lithium polysulfides, thus assuring the low polarization, fast redox reaction kinetics, and sufficient utilization of sulfur.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201901667</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6583-7114</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2019-10, Vol.9 (37), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2300515468
source Wiley Online Library Journals Frontfile Complete
subjects catalysis
Cathodes
charge field
Conversion
Dependence
Electrochemical analysis
Electrode polarization
Electron energy loss spectroscopy
Energy dissipation
Heterostructures
Holography
Lithium
Lithium sulfur batteries
Manganese oxides
Nanoparticles
Polysulfides
Reaction kinetics
Sulfur
sulfur cathodes
yolk–shell
title Interfacial Charge Field in Hierarchical Yolk–Shell Nanocapsule Enables Efficient Immobilization and Catalysis of Polysulfides Conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A44%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Charge%20Field%20in%20Hierarchical%20Yolk%E2%80%93Shell%20Nanocapsule%20Enables%20Efficient%20Immobilization%20and%20Catalysis%20of%20Polysulfides%20Conversion&rft.jtitle=Advanced%20energy%20materials&rft.au=Liu,%20Handing&rft.date=2019-10-01&rft.volume=9&rft.issue=37&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201901667&rft_dat=%3Cproquest_cross%3E2300515468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300515468&rft_id=info:pmid/&rfr_iscdi=true