Spherical geometry, Zernike’s separability, and interbasis expansion coefficients
Free motion on a 3-sphere, properly projected on the 2-dimensional manifold of a disk, yields the Zernike system, which exhibits the fundamental properties of superintegrability. These include separability in a variety of coordinate systems, polynomial solutions, and a particular subset of Clebsch-G...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2019-10, Vol.60 (10) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 60 |
creator | Atakishiyev, Natig M. Pogosyan, George S. Wolf, Kurt Bernardo Yakhno, Alexander |
description | Free motion on a 3-sphere, properly projected on the 2-dimensional manifold of a disk, yields the Zernike system, which exhibits the fundamental properties of superintegrability. These include separability in a variety of coordinate systems, polynomial solutions, and a particular subset of Clebsch-Gordan coefficients as interbasis expansion coefficients that are higher orthogonal polynomials from the Askey scheme. Deriving these results from the initial formulation in spherical geometry provides the Zernike system with interest beyond its optical applications. |
doi_str_mv | 10.1063/1.5099974 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300356484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300356484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-fe66ff7ab4ecdc542c9e2e8e0c9910f427dd4d0bfd066813e404f7452b6bad763</originalsourceid><addsrcrecordid>eNp90L9OwzAQBnALgUQpDLxBJCYQKWfHcZwRVfyTKjEUFhbLcc7g0ibBdhHdeA1ejychqBUMSEw33E_f6T5CDimMKIjsjI5yKMuy4FtkQEGWaSFyuU0GAIyljEu5S_ZCmAFQKjkfkOm0e0LvjJ4nj9guMPrVafKAvnHP-Pn-EZKAnfa6cnMX-41u6sQ1EX2lgwsJvnW6Ca5tEtOitc44bGLYJztWzwMebOaQ3F9e3I2v08nt1c34fJKajBUxtSiEtYWuOJra5JyZEhlKBFOWFCxnRV3zGipbgxCSZsiB24LnrBKVrguRDcnROrfz7csSQ1Szdumb_qRiGUCWCy55r47Xyvg2BI9Wdd4ttF8pCuq7M0XVprPenqxtMC7q2D_2g19b_wtVV9v_8N_kLyZmfLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300356484</pqid></control><display><type>article</type><title>Spherical geometry, Zernike’s separability, and interbasis expansion coefficients</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Atakishiyev, Natig M. ; Pogosyan, George S. ; Wolf, Kurt Bernardo ; Yakhno, Alexander</creator><creatorcontrib>Atakishiyev, Natig M. ; Pogosyan, George S. ; Wolf, Kurt Bernardo ; Yakhno, Alexander</creatorcontrib><description>Free motion on a 3-sphere, properly projected on the 2-dimensional manifold of a disk, yields the Zernike system, which exhibits the fundamental properties of superintegrability. These include separability in a variety of coordinate systems, polynomial solutions, and a particular subset of Clebsch-Gordan coefficients as interbasis expansion coefficients that are higher orthogonal polynomials from the Askey scheme. Deriving these results from the initial formulation in spherical geometry provides the Zernike system with interest beyond its optical applications.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5099974</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Clebsch-Gordan coefficients ; Coordinates ; Physics ; Polynomials ; Set theory ; Thermal expansion</subject><ispartof>Journal of mathematical physics, 2019-10, Vol.60 (10)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-fe66ff7ab4ecdc542c9e2e8e0c9910f427dd4d0bfd066813e404f7452b6bad763</citedby><cites>FETCH-LOGICAL-c327t-fe66ff7ab4ecdc542c9e2e8e0c9910f427dd4d0bfd066813e404f7452b6bad763</cites><orcidid>0000-0002-1103-0470 ; 0000-0002-8531-8936 ; 0000-0003-2488-021X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5099974$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Atakishiyev, Natig M.</creatorcontrib><creatorcontrib>Pogosyan, George S.</creatorcontrib><creatorcontrib>Wolf, Kurt Bernardo</creatorcontrib><creatorcontrib>Yakhno, Alexander</creatorcontrib><title>Spherical geometry, Zernike’s separability, and interbasis expansion coefficients</title><title>Journal of mathematical physics</title><description>Free motion on a 3-sphere, properly projected on the 2-dimensional manifold of a disk, yields the Zernike system, which exhibits the fundamental properties of superintegrability. These include separability in a variety of coordinate systems, polynomial solutions, and a particular subset of Clebsch-Gordan coefficients as interbasis expansion coefficients that are higher orthogonal polynomials from the Askey scheme. Deriving these results from the initial formulation in spherical geometry provides the Zernike system with interest beyond its optical applications.</description><subject>Clebsch-Gordan coefficients</subject><subject>Coordinates</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Set theory</subject><subject>Thermal expansion</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90L9OwzAQBnALgUQpDLxBJCYQKWfHcZwRVfyTKjEUFhbLcc7g0ibBdhHdeA1ejychqBUMSEw33E_f6T5CDimMKIjsjI5yKMuy4FtkQEGWaSFyuU0GAIyljEu5S_ZCmAFQKjkfkOm0e0LvjJ4nj9guMPrVafKAvnHP-Pn-EZKAnfa6cnMX-41u6sQ1EX2lgwsJvnW6Ca5tEtOitc44bGLYJztWzwMebOaQ3F9e3I2v08nt1c34fJKajBUxtSiEtYWuOJra5JyZEhlKBFOWFCxnRV3zGipbgxCSZsiB24LnrBKVrguRDcnROrfz7csSQ1Szdumb_qRiGUCWCy55r47Xyvg2BI9Wdd4ttF8pCuq7M0XVprPenqxtMC7q2D_2g19b_wtVV9v_8N_kLyZmfLI</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Atakishiyev, Natig M.</creator><creator>Pogosyan, George S.</creator><creator>Wolf, Kurt Bernardo</creator><creator>Yakhno, Alexander</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1103-0470</orcidid><orcidid>https://orcid.org/0000-0002-8531-8936</orcidid><orcidid>https://orcid.org/0000-0003-2488-021X</orcidid></search><sort><creationdate>20191001</creationdate><title>Spherical geometry, Zernike’s separability, and interbasis expansion coefficients</title><author>Atakishiyev, Natig M. ; Pogosyan, George S. ; Wolf, Kurt Bernardo ; Yakhno, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-fe66ff7ab4ecdc542c9e2e8e0c9910f427dd4d0bfd066813e404f7452b6bad763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Clebsch-Gordan coefficients</topic><topic>Coordinates</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Set theory</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atakishiyev, Natig M.</creatorcontrib><creatorcontrib>Pogosyan, George S.</creatorcontrib><creatorcontrib>Wolf, Kurt Bernardo</creatorcontrib><creatorcontrib>Yakhno, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atakishiyev, Natig M.</au><au>Pogosyan, George S.</au><au>Wolf, Kurt Bernardo</au><au>Yakhno, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spherical geometry, Zernike’s separability, and interbasis expansion coefficients</atitle><jtitle>Journal of mathematical physics</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>60</volume><issue>10</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Free motion on a 3-sphere, properly projected on the 2-dimensional manifold of a disk, yields the Zernike system, which exhibits the fundamental properties of superintegrability. These include separability in a variety of coordinate systems, polynomial solutions, and a particular subset of Clebsch-Gordan coefficients as interbasis expansion coefficients that are higher orthogonal polynomials from the Askey scheme. Deriving these results from the initial formulation in spherical geometry provides the Zernike system with interest beyond its optical applications.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5099974</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1103-0470</orcidid><orcidid>https://orcid.org/0000-0002-8531-8936</orcidid><orcidid>https://orcid.org/0000-0003-2488-021X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2019-10, Vol.60 (10) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_2300356484 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Clebsch-Gordan coefficients Coordinates Physics Polynomials Set theory Thermal expansion |
title | Spherical geometry, Zernike’s separability, and interbasis expansion coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spherical%20geometry,%20Zernike%E2%80%99s%20separability,%20and%20interbasis%20expansion%20coefficients&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Atakishiyev,%20Natig%20M.&rft.date=2019-10-01&rft.volume=60&rft.issue=10&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5099974&rft_dat=%3Cproquest_cross%3E2300356484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300356484&rft_id=info:pmid/&rfr_iscdi=true |