Spherical geometry, Zernike’s separability, and interbasis expansion coefficients

Free motion on a 3-sphere, properly projected on the 2-dimensional manifold of a disk, yields the Zernike system, which exhibits the fundamental properties of superintegrability. These include separability in a variety of coordinate systems, polynomial solutions, and a particular subset of Clebsch-G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2019-10, Vol.60 (10)
Hauptverfasser: Atakishiyev, Natig M., Pogosyan, George S., Wolf, Kurt Bernardo, Yakhno, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Journal of mathematical physics
container_volume 60
creator Atakishiyev, Natig M.
Pogosyan, George S.
Wolf, Kurt Bernardo
Yakhno, Alexander
description Free motion on a 3-sphere, properly projected on the 2-dimensional manifold of a disk, yields the Zernike system, which exhibits the fundamental properties of superintegrability. These include separability in a variety of coordinate systems, polynomial solutions, and a particular subset of Clebsch-Gordan coefficients as interbasis expansion coefficients that are higher orthogonal polynomials from the Askey scheme. Deriving these results from the initial formulation in spherical geometry provides the Zernike system with interest beyond its optical applications.
doi_str_mv 10.1063/1.5099974
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300356484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300356484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-fe66ff7ab4ecdc542c9e2e8e0c9910f427dd4d0bfd066813e404f7452b6bad763</originalsourceid><addsrcrecordid>eNp90L9OwzAQBnALgUQpDLxBJCYQKWfHcZwRVfyTKjEUFhbLcc7g0ibBdhHdeA1ejychqBUMSEw33E_f6T5CDimMKIjsjI5yKMuy4FtkQEGWaSFyuU0GAIyljEu5S_ZCmAFQKjkfkOm0e0LvjJ4nj9guMPrVafKAvnHP-Pn-EZKAnfa6cnMX-41u6sQ1EX2lgwsJvnW6Ca5tEtOitc44bGLYJztWzwMebOaQ3F9e3I2v08nt1c34fJKajBUxtSiEtYWuOJra5JyZEhlKBFOWFCxnRV3zGipbgxCSZsiB24LnrBKVrguRDcnROrfz7csSQ1Szdumb_qRiGUCWCy55r47Xyvg2BI9Wdd4ttF8pCuq7M0XVprPenqxtMC7q2D_2g19b_wtVV9v_8N_kLyZmfLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300356484</pqid></control><display><type>article</type><title>Spherical geometry, Zernike’s separability, and interbasis expansion coefficients</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Atakishiyev, Natig M. ; Pogosyan, George S. ; Wolf, Kurt Bernardo ; Yakhno, Alexander</creator><creatorcontrib>Atakishiyev, Natig M. ; Pogosyan, George S. ; Wolf, Kurt Bernardo ; Yakhno, Alexander</creatorcontrib><description>Free motion on a 3-sphere, properly projected on the 2-dimensional manifold of a disk, yields the Zernike system, which exhibits the fundamental properties of superintegrability. These include separability in a variety of coordinate systems, polynomial solutions, and a particular subset of Clebsch-Gordan coefficients as interbasis expansion coefficients that are higher orthogonal polynomials from the Askey scheme. Deriving these results from the initial formulation in spherical geometry provides the Zernike system with interest beyond its optical applications.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5099974</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Clebsch-Gordan coefficients ; Coordinates ; Physics ; Polynomials ; Set theory ; Thermal expansion</subject><ispartof>Journal of mathematical physics, 2019-10, Vol.60 (10)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-fe66ff7ab4ecdc542c9e2e8e0c9910f427dd4d0bfd066813e404f7452b6bad763</citedby><cites>FETCH-LOGICAL-c327t-fe66ff7ab4ecdc542c9e2e8e0c9910f427dd4d0bfd066813e404f7452b6bad763</cites><orcidid>0000-0002-1103-0470 ; 0000-0002-8531-8936 ; 0000-0003-2488-021X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5099974$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Atakishiyev, Natig M.</creatorcontrib><creatorcontrib>Pogosyan, George S.</creatorcontrib><creatorcontrib>Wolf, Kurt Bernardo</creatorcontrib><creatorcontrib>Yakhno, Alexander</creatorcontrib><title>Spherical geometry, Zernike’s separability, and interbasis expansion coefficients</title><title>Journal of mathematical physics</title><description>Free motion on a 3-sphere, properly projected on the 2-dimensional manifold of a disk, yields the Zernike system, which exhibits the fundamental properties of superintegrability. These include separability in a variety of coordinate systems, polynomial solutions, and a particular subset of Clebsch-Gordan coefficients as interbasis expansion coefficients that are higher orthogonal polynomials from the Askey scheme. Deriving these results from the initial formulation in spherical geometry provides the Zernike system with interest beyond its optical applications.</description><subject>Clebsch-Gordan coefficients</subject><subject>Coordinates</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Set theory</subject><subject>Thermal expansion</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90L9OwzAQBnALgUQpDLxBJCYQKWfHcZwRVfyTKjEUFhbLcc7g0ibBdhHdeA1ejychqBUMSEw33E_f6T5CDimMKIjsjI5yKMuy4FtkQEGWaSFyuU0GAIyljEu5S_ZCmAFQKjkfkOm0e0LvjJ4nj9guMPrVafKAvnHP-Pn-EZKAnfa6cnMX-41u6sQ1EX2lgwsJvnW6Ca5tEtOitc44bGLYJztWzwMebOaQ3F9e3I2v08nt1c34fJKajBUxtSiEtYWuOJra5JyZEhlKBFOWFCxnRV3zGipbgxCSZsiB24LnrBKVrguRDcnROrfz7csSQ1Szdumb_qRiGUCWCy55r47Xyvg2BI9Wdd4ttF8pCuq7M0XVprPenqxtMC7q2D_2g19b_wtVV9v_8N_kLyZmfLI</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Atakishiyev, Natig M.</creator><creator>Pogosyan, George S.</creator><creator>Wolf, Kurt Bernardo</creator><creator>Yakhno, Alexander</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1103-0470</orcidid><orcidid>https://orcid.org/0000-0002-8531-8936</orcidid><orcidid>https://orcid.org/0000-0003-2488-021X</orcidid></search><sort><creationdate>20191001</creationdate><title>Spherical geometry, Zernike’s separability, and interbasis expansion coefficients</title><author>Atakishiyev, Natig M. ; Pogosyan, George S. ; Wolf, Kurt Bernardo ; Yakhno, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-fe66ff7ab4ecdc542c9e2e8e0c9910f427dd4d0bfd066813e404f7452b6bad763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Clebsch-Gordan coefficients</topic><topic>Coordinates</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Set theory</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atakishiyev, Natig M.</creatorcontrib><creatorcontrib>Pogosyan, George S.</creatorcontrib><creatorcontrib>Wolf, Kurt Bernardo</creatorcontrib><creatorcontrib>Yakhno, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atakishiyev, Natig M.</au><au>Pogosyan, George S.</au><au>Wolf, Kurt Bernardo</au><au>Yakhno, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spherical geometry, Zernike’s separability, and interbasis expansion coefficients</atitle><jtitle>Journal of mathematical physics</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>60</volume><issue>10</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Free motion on a 3-sphere, properly projected on the 2-dimensional manifold of a disk, yields the Zernike system, which exhibits the fundamental properties of superintegrability. These include separability in a variety of coordinate systems, polynomial solutions, and a particular subset of Clebsch-Gordan coefficients as interbasis expansion coefficients that are higher orthogonal polynomials from the Askey scheme. Deriving these results from the initial formulation in spherical geometry provides the Zernike system with interest beyond its optical applications.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5099974</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1103-0470</orcidid><orcidid>https://orcid.org/0000-0002-8531-8936</orcidid><orcidid>https://orcid.org/0000-0003-2488-021X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2019-10, Vol.60 (10)
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2300356484
source AIP Journals Complete; Alma/SFX Local Collection
subjects Clebsch-Gordan coefficients
Coordinates
Physics
Polynomials
Set theory
Thermal expansion
title Spherical geometry, Zernike’s separability, and interbasis expansion coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spherical%20geometry,%20Zernike%E2%80%99s%20separability,%20and%20interbasis%20expansion%20coefficients&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Atakishiyev,%20Natig%20M.&rft.date=2019-10-01&rft.volume=60&rft.issue=10&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5099974&rft_dat=%3Cproquest_cross%3E2300356484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300356484&rft_id=info:pmid/&rfr_iscdi=true