A 13.56-MHz Full-Bridge Class-D ZVS Inverter With Dynamic Dead-Time Control for Wireless Power Transfer Systems

This paper presents the development of a Class-D full-bridge zero-voltage switching (ZVS) inverter, applicable to wireless power transfer (WPT) systems, operating at 13.56 MHz switching frequency with dynamic dead-time control (DDTC). Resonant-coupled WPT systems are being designed at ultrahigh swit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2020-02, Vol.67 (2), p.1487-1497
Hauptverfasser: Tebianian, Hamed, Salami, Younes, Jeyasurya, Benjamin, Quaicoe, John E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1497
container_issue 2
container_start_page 1487
container_title IEEE transactions on industrial electronics (1982)
container_volume 67
creator Tebianian, Hamed
Salami, Younes
Jeyasurya, Benjamin
Quaicoe, John E.
description This paper presents the development of a Class-D full-bridge zero-voltage switching (ZVS) inverter, applicable to wireless power transfer (WPT) systems, operating at 13.56 MHz switching frequency with dynamic dead-time control (DDTC). Resonant-coupled WPT systems are being designed at ultrahigh switching frequencies to reduce the size of the wireless link and the passive components. Maintaining ZVS while controlling the output power delivered to a fixed or variable load is one of the major challenges of designing inverters at multi-MHz switching frequencies. DDTC is the approach deployed in this paper to sustain soft switching of a Class-D full-bridge inverter over the full range of output power while regulating the input dc bus voltage. Simulation results are presented to show that dynamically controlling the dead-time during input dc bus voltage variations reduces switch-node voltage overshoot, prevents large current spikes in the switching devices, and reduces associated high switching loss. Practical results obtained show that DDTC reduces switch-node voltage overshoot, increases the inverter efficiency, and reduces the steady-state temperature of the inverter during output power regulation.
doi_str_mv 10.1109/TIE.2018.2890505
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2300338997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8605529</ieee_id><sourcerecordid>2300338997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-de4b075dfad46dc58e1559c5b2c0dd39de12a7a4b3499f72ea66102646108cd13</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFzxtnN9kke6z9sIWKQqOCl7DNTjQlTepuqtRf75YWLzNzeN4Z5iHkmkPAOai7bDYOBPA0EKkCCfKE9LiUCVMqSk9JD0SSMoAoPicXzq0AeCS57JF2QHkYyJg9Tn_pZFvX7N5W5gPpsNbOsRF9f13QWfONtkNL36ruk452jV5XBR2hNiyr1p5tm862NS3bPWKxRufoc_vjE5nVjSv9sNi5DtfukpyVunZ4dex98jIZZ8Mpmz89zIaDOSuE4h0zGC0hkabUJopNIVP0z6hCLkUBxoTKIBc60dEyjJQqE4E6jjmIOPI1LQwP--T2sHdj268tui5ftVvb-JO5CAHCMFUq8RQcqMK2zlks842t1trucg75XmvuteZ7rflRq4_cHCIVIv7jaQxSChX-AaH8cZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300338997</pqid></control><display><type>article</type><title>A 13.56-MHz Full-Bridge Class-D ZVS Inverter With Dynamic Dead-Time Control for Wireless Power Transfer Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Tebianian, Hamed ; Salami, Younes ; Jeyasurya, Benjamin ; Quaicoe, John E.</creator><creatorcontrib>Tebianian, Hamed ; Salami, Younes ; Jeyasurya, Benjamin ; Quaicoe, John E.</creatorcontrib><description>This paper presents the development of a Class-D full-bridge zero-voltage switching (ZVS) inverter, applicable to wireless power transfer (WPT) systems, operating at 13.56 MHz switching frequency with dynamic dead-time control (DDTC). Resonant-coupled WPT systems are being designed at ultrahigh switching frequencies to reduce the size of the wireless link and the passive components. Maintaining ZVS while controlling the output power delivered to a fixed or variable load is one of the major challenges of designing inverters at multi-MHz switching frequencies. DDTC is the approach deployed in this paper to sustain soft switching of a Class-D full-bridge inverter over the full range of output power while regulating the input dc bus voltage. Simulation results are presented to show that dynamically controlling the dead-time during input dc bus voltage variations reduces switch-node voltage overshoot, prevents large current spikes in the switching devices, and reduces associated high switching loss. Practical results obtained show that DDTC reduces switch-node voltage overshoot, increases the inverter efficiency, and reduces the steady-state temperature of the inverter during output power regulation.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2018.2890505</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitance ; Class-D full-bridge inverter ; Control systems ; Data buses ; dynamic dead-time control (DDTC) ; eGaN field-effect transistor (FET) ; Electric potential ; Inductors ; Inverters ; Passive components ; Switches ; Switching ; Switching frequency ; Voltage ; wireless power transfer (WPT) ; Wireless power transmission ; Zero voltage switching</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-02, Vol.67 (2), p.1487-1497</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-de4b075dfad46dc58e1559c5b2c0dd39de12a7a4b3499f72ea66102646108cd13</citedby><cites>FETCH-LOGICAL-c291t-de4b075dfad46dc58e1559c5b2c0dd39de12a7a4b3499f72ea66102646108cd13</cites><orcidid>0000-0002-6647-6349 ; 0000-0002-3430-4534 ; 0000-0003-1340-9588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8605529$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8605529$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tebianian, Hamed</creatorcontrib><creatorcontrib>Salami, Younes</creatorcontrib><creatorcontrib>Jeyasurya, Benjamin</creatorcontrib><creatorcontrib>Quaicoe, John E.</creatorcontrib><title>A 13.56-MHz Full-Bridge Class-D ZVS Inverter With Dynamic Dead-Time Control for Wireless Power Transfer Systems</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper presents the development of a Class-D full-bridge zero-voltage switching (ZVS) inverter, applicable to wireless power transfer (WPT) systems, operating at 13.56 MHz switching frequency with dynamic dead-time control (DDTC). Resonant-coupled WPT systems are being designed at ultrahigh switching frequencies to reduce the size of the wireless link and the passive components. Maintaining ZVS while controlling the output power delivered to a fixed or variable load is one of the major challenges of designing inverters at multi-MHz switching frequencies. DDTC is the approach deployed in this paper to sustain soft switching of a Class-D full-bridge inverter over the full range of output power while regulating the input dc bus voltage. Simulation results are presented to show that dynamically controlling the dead-time during input dc bus voltage variations reduces switch-node voltage overshoot, prevents large current spikes in the switching devices, and reduces associated high switching loss. Practical results obtained show that DDTC reduces switch-node voltage overshoot, increases the inverter efficiency, and reduces the steady-state temperature of the inverter during output power regulation.</description><subject>Capacitance</subject><subject>Class-D full-bridge inverter</subject><subject>Control systems</subject><subject>Data buses</subject><subject>dynamic dead-time control (DDTC)</subject><subject>eGaN field-effect transistor (FET)</subject><subject>Electric potential</subject><subject>Inductors</subject><subject>Inverters</subject><subject>Passive components</subject><subject>Switches</subject><subject>Switching</subject><subject>Switching frequency</subject><subject>Voltage</subject><subject>wireless power transfer (WPT)</subject><subject>Wireless power transmission</subject><subject>Zero voltage switching</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFzxtnN9kke6z9sIWKQqOCl7DNTjQlTepuqtRf75YWLzNzeN4Z5iHkmkPAOai7bDYOBPA0EKkCCfKE9LiUCVMqSk9JD0SSMoAoPicXzq0AeCS57JF2QHkYyJg9Tn_pZFvX7N5W5gPpsNbOsRF9f13QWfONtkNL36ruk452jV5XBR2hNiyr1p5tm862NS3bPWKxRufoc_vjE5nVjSv9sNi5DtfukpyVunZ4dex98jIZZ8Mpmz89zIaDOSuE4h0zGC0hkabUJopNIVP0z6hCLkUBxoTKIBc60dEyjJQqE4E6jjmIOPI1LQwP--T2sHdj268tui5ftVvb-JO5CAHCMFUq8RQcqMK2zlks842t1trucg75XmvuteZ7rflRq4_cHCIVIv7jaQxSChX-AaH8cZI</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Tebianian, Hamed</creator><creator>Salami, Younes</creator><creator>Jeyasurya, Benjamin</creator><creator>Quaicoe, John E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6647-6349</orcidid><orcidid>https://orcid.org/0000-0002-3430-4534</orcidid><orcidid>https://orcid.org/0000-0003-1340-9588</orcidid></search><sort><creationdate>20200201</creationdate><title>A 13.56-MHz Full-Bridge Class-D ZVS Inverter With Dynamic Dead-Time Control for Wireless Power Transfer Systems</title><author>Tebianian, Hamed ; Salami, Younes ; Jeyasurya, Benjamin ; Quaicoe, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-de4b075dfad46dc58e1559c5b2c0dd39de12a7a4b3499f72ea66102646108cd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Capacitance</topic><topic>Class-D full-bridge inverter</topic><topic>Control systems</topic><topic>Data buses</topic><topic>dynamic dead-time control (DDTC)</topic><topic>eGaN field-effect transistor (FET)</topic><topic>Electric potential</topic><topic>Inductors</topic><topic>Inverters</topic><topic>Passive components</topic><topic>Switches</topic><topic>Switching</topic><topic>Switching frequency</topic><topic>Voltage</topic><topic>wireless power transfer (WPT)</topic><topic>Wireless power transmission</topic><topic>Zero voltage switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tebianian, Hamed</creatorcontrib><creatorcontrib>Salami, Younes</creatorcontrib><creatorcontrib>Jeyasurya, Benjamin</creatorcontrib><creatorcontrib>Quaicoe, John E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tebianian, Hamed</au><au>Salami, Younes</au><au>Jeyasurya, Benjamin</au><au>Quaicoe, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 13.56-MHz Full-Bridge Class-D ZVS Inverter With Dynamic Dead-Time Control for Wireless Power Transfer Systems</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>67</volume><issue>2</issue><spage>1487</spage><epage>1497</epage><pages>1487-1497</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper presents the development of a Class-D full-bridge zero-voltage switching (ZVS) inverter, applicable to wireless power transfer (WPT) systems, operating at 13.56 MHz switching frequency with dynamic dead-time control (DDTC). Resonant-coupled WPT systems are being designed at ultrahigh switching frequencies to reduce the size of the wireless link and the passive components. Maintaining ZVS while controlling the output power delivered to a fixed or variable load is one of the major challenges of designing inverters at multi-MHz switching frequencies. DDTC is the approach deployed in this paper to sustain soft switching of a Class-D full-bridge inverter over the full range of output power while regulating the input dc bus voltage. Simulation results are presented to show that dynamically controlling the dead-time during input dc bus voltage variations reduces switch-node voltage overshoot, prevents large current spikes in the switching devices, and reduces associated high switching loss. Practical results obtained show that DDTC reduces switch-node voltage overshoot, increases the inverter efficiency, and reduces the steady-state temperature of the inverter during output power regulation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2018.2890505</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6647-6349</orcidid><orcidid>https://orcid.org/0000-0002-3430-4534</orcidid><orcidid>https://orcid.org/0000-0003-1340-9588</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2020-02, Vol.67 (2), p.1487-1497
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2300338997
source IEEE Electronic Library (IEL)
subjects Capacitance
Class-D full-bridge inverter
Control systems
Data buses
dynamic dead-time control (DDTC)
eGaN field-effect transistor (FET)
Electric potential
Inductors
Inverters
Passive components
Switches
Switching
Switching frequency
Voltage
wireless power transfer (WPT)
Wireless power transmission
Zero voltage switching
title A 13.56-MHz Full-Bridge Class-D ZVS Inverter With Dynamic Dead-Time Control for Wireless Power Transfer Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%2013.56-MHz%20Full-Bridge%20Class-D%20ZVS%20Inverter%20With%20Dynamic%20Dead-Time%20Control%20for%20Wireless%20Power%20Transfer%20Systems&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Tebianian,%20Hamed&rft.date=2020-02-01&rft.volume=67&rft.issue=2&rft.spage=1487&rft.epage=1497&rft.pages=1487-1497&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2018.2890505&rft_dat=%3Cproquest_RIE%3E2300338997%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300338997&rft_id=info:pmid/&rft_ieee_id=8605529&rfr_iscdi=true