Virtual Temperature Detection of Semiconductors in a Megawatt Field Converter
A converter monitoring unit (CMU) that monitors the power modules of the converter in a multimegawatt test wind turbine is presented in this paper. A method of calculating the virtual temperature (T_{v}) of the power semiconductors is laid out. Contrary to previous work, the method enables T_{v} cha...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2020-02, Vol.67 (2), p.1305-1315 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1315 |
---|---|
container_issue | 2 |
container_start_page | 1305 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 67 |
creator | Rannestad, Bjorn Fischer, Katharina Nielsen, Peter Gadgaard, Kristian Munk-Nielsen, Stig |
description | A converter monitoring unit (CMU) that monitors the power modules of the converter in a multimegawatt test wind turbine is presented in this paper. A method of calculating the virtual temperature (T_{v}) of the power semiconductors is laid out. Contrary to previous work, the method enables T_{v} characterization of the semiconductors by means of sampled data during normal operation of the converter, without the need for special calibration routines. The dynamic operation of the wind turbine and the large amount of data sampled in the CMU enables a statistical approach to generate reference data for T_{v} calculations. The method was tested on machine side converter diodes of the test turbine, based on samples of collector-emitter voltage (vce_{\text{on}}) and current (i_{c}). Other temperature sensitive electrical parameters may also be used as input to the method. The CMU has been operating for more than a year in the test turbine, showing consistent data throughout the whole period. While the monitoring method and results are based on measurements on a single test turbine, the paper also link these to converter failure data from a large fleet of operating turbines. |
doi_str_mv | 10.1109/TIE.2019.2901662 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2300338458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8658003</ieee_id><sourcerecordid>2300338458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-44a70f5b58d266cea571a3f28b764cd86d861604da361418c644b32d57a76db53</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wU3A9dSXTL5mKbXVQosLq9uQybyRKe2kZjKK_94pLcKDuzn3PjiE3DKYMAbFw3oxm3BgxYQXwJTiZ2TEpNRZUQhzTkbAtckAhLokV123AWBCMjkiq48mpt5t6Rp3e4wu9RHpEyb0qQktDTV9w13jQ1v1PoXY0aaljq7w0_24lOi8wW1Fp6H9xpgwXpOL2m07vDnlmLzPZ-vpS7Z8fV5MH5eZ5wVLmRBOQy1LaSqulEcnNXN5zU2plfCVUcMxBaJyuWKCGa-EKHNeSe20qkqZj8n9cXcfw1ePXbKb0Md2eGl5DpDnRkgzUHCkfAxdF7G2-9jsXPy1DOxBmh2k2YM0e5I2VO6OlQYR_3GjpDms_gG422dI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300338458</pqid></control><display><type>article</type><title>Virtual Temperature Detection of Semiconductors in a Megawatt Field Converter</title><source>IEEE Electronic Library (IEL)</source><creator>Rannestad, Bjorn ; Fischer, Katharina ; Nielsen, Peter ; Gadgaard, Kristian ; Munk-Nielsen, Stig</creator><creatorcontrib>Rannestad, Bjorn ; Fischer, Katharina ; Nielsen, Peter ; Gadgaard, Kristian ; Munk-Nielsen, Stig</creatorcontrib><description><![CDATA[A converter monitoring unit (CMU) that monitors the power modules of the converter in a multimegawatt test wind turbine is presented in this paper. A method of calculating the virtual temperature (<inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula>) of the power semiconductors is laid out. Contrary to previous work, the method enables <inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula> characterization of the semiconductors by means of sampled data during normal operation of the converter, without the need for special calibration routines. The dynamic operation of the wind turbine and the large amount of data sampled in the CMU enables a statistical approach to generate reference data for <inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula> calculations. The method was tested on machine side converter diodes of the test turbine, based on samples of collector-emitter voltage (<inline-formula><tex-math notation="LaTeX">vce_{\text{on}}</tex-math></inline-formula>) and current (<inline-formula><tex-math notation="LaTeX">i_{c}</tex-math></inline-formula>). Other temperature sensitive electrical parameters may also be used as input to the method. The CMU has been operating for more than a year in the test turbine, showing consistent data throughout the whole period. While the monitoring method and results are based on measurements on a single test turbine, the paper also link these to converter failure data from a large fleet of operating turbines.]]></description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2901662</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Converters ; Diodes ; Emitters ; Insulated gate bipolar transistors ; Mathematical analysis ; Monitoring ; Multichip modules ; Parameter sensitivity ; pulsewidth modulated inverters ; Semiconductors ; Statistical methods ; Temperature measurement ; Temperature sensors ; Turbines ; Wind turbines</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-02, Vol.67 (2), p.1305-1315</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-44a70f5b58d266cea571a3f28b764cd86d861604da361418c644b32d57a76db53</citedby><cites>FETCH-LOGICAL-c291t-44a70f5b58d266cea571a3f28b764cd86d861604da361418c644b32d57a76db53</cites><orcidid>0000-0001-9653-5437 ; 0000-0001-7804-6250 ; 0000-0001-5737-1572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8658003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8658003$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rannestad, Bjorn</creatorcontrib><creatorcontrib>Fischer, Katharina</creatorcontrib><creatorcontrib>Nielsen, Peter</creatorcontrib><creatorcontrib>Gadgaard, Kristian</creatorcontrib><creatorcontrib>Munk-Nielsen, Stig</creatorcontrib><title>Virtual Temperature Detection of Semiconductors in a Megawatt Field Converter</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description><![CDATA[A converter monitoring unit (CMU) that monitors the power modules of the converter in a multimegawatt test wind turbine is presented in this paper. A method of calculating the virtual temperature (<inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula>) of the power semiconductors is laid out. Contrary to previous work, the method enables <inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula> characterization of the semiconductors by means of sampled data during normal operation of the converter, without the need for special calibration routines. The dynamic operation of the wind turbine and the large amount of data sampled in the CMU enables a statistical approach to generate reference data for <inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula> calculations. The method was tested on machine side converter diodes of the test turbine, based on samples of collector-emitter voltage (<inline-formula><tex-math notation="LaTeX">vce_{\text{on}}</tex-math></inline-formula>) and current (<inline-formula><tex-math notation="LaTeX">i_{c}</tex-math></inline-formula>). Other temperature sensitive electrical parameters may also be used as input to the method. The CMU has been operating for more than a year in the test turbine, showing consistent data throughout the whole period. While the monitoring method and results are based on measurements on a single test turbine, the paper also link these to converter failure data from a large fleet of operating turbines.]]></description><subject>Converters</subject><subject>Diodes</subject><subject>Emitters</subject><subject>Insulated gate bipolar transistors</subject><subject>Mathematical analysis</subject><subject>Monitoring</subject><subject>Multichip modules</subject><subject>Parameter sensitivity</subject><subject>pulsewidth modulated inverters</subject><subject>Semiconductors</subject><subject>Statistical methods</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Turbines</subject><subject>Wind turbines</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKt7wU3A9dSXTL5mKbXVQosLq9uQybyRKe2kZjKK_94pLcKDuzn3PjiE3DKYMAbFw3oxm3BgxYQXwJTiZ2TEpNRZUQhzTkbAtckAhLokV123AWBCMjkiq48mpt5t6Rp3e4wu9RHpEyb0qQktDTV9w13jQ1v1PoXY0aaljq7w0_24lOi8wW1Fp6H9xpgwXpOL2m07vDnlmLzPZ-vpS7Z8fV5MH5eZ5wVLmRBOQy1LaSqulEcnNXN5zU2plfCVUcMxBaJyuWKCGa-EKHNeSe20qkqZj8n9cXcfw1ePXbKb0Md2eGl5DpDnRkgzUHCkfAxdF7G2-9jsXPy1DOxBmh2k2YM0e5I2VO6OlQYR_3GjpDms_gG422dI</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Rannestad, Bjorn</creator><creator>Fischer, Katharina</creator><creator>Nielsen, Peter</creator><creator>Gadgaard, Kristian</creator><creator>Munk-Nielsen, Stig</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9653-5437</orcidid><orcidid>https://orcid.org/0000-0001-7804-6250</orcidid><orcidid>https://orcid.org/0000-0001-5737-1572</orcidid></search><sort><creationdate>20200201</creationdate><title>Virtual Temperature Detection of Semiconductors in a Megawatt Field Converter</title><author>Rannestad, Bjorn ; Fischer, Katharina ; Nielsen, Peter ; Gadgaard, Kristian ; Munk-Nielsen, Stig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-44a70f5b58d266cea571a3f28b764cd86d861604da361418c644b32d57a76db53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Converters</topic><topic>Diodes</topic><topic>Emitters</topic><topic>Insulated gate bipolar transistors</topic><topic>Mathematical analysis</topic><topic>Monitoring</topic><topic>Multichip modules</topic><topic>Parameter sensitivity</topic><topic>pulsewidth modulated inverters</topic><topic>Semiconductors</topic><topic>Statistical methods</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Turbines</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rannestad, Bjorn</creatorcontrib><creatorcontrib>Fischer, Katharina</creatorcontrib><creatorcontrib>Nielsen, Peter</creatorcontrib><creatorcontrib>Gadgaard, Kristian</creatorcontrib><creatorcontrib>Munk-Nielsen, Stig</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rannestad, Bjorn</au><au>Fischer, Katharina</au><au>Nielsen, Peter</au><au>Gadgaard, Kristian</au><au>Munk-Nielsen, Stig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual Temperature Detection of Semiconductors in a Megawatt Field Converter</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>67</volume><issue>2</issue><spage>1305</spage><epage>1315</epage><pages>1305-1315</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract><![CDATA[A converter monitoring unit (CMU) that monitors the power modules of the converter in a multimegawatt test wind turbine is presented in this paper. A method of calculating the virtual temperature (<inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula>) of the power semiconductors is laid out. Contrary to previous work, the method enables <inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula> characterization of the semiconductors by means of sampled data during normal operation of the converter, without the need for special calibration routines. The dynamic operation of the wind turbine and the large amount of data sampled in the CMU enables a statistical approach to generate reference data for <inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula> calculations. The method was tested on machine side converter diodes of the test turbine, based on samples of collector-emitter voltage (<inline-formula><tex-math notation="LaTeX">vce_{\text{on}}</tex-math></inline-formula>) and current (<inline-formula><tex-math notation="LaTeX">i_{c}</tex-math></inline-formula>). Other temperature sensitive electrical parameters may also be used as input to the method. The CMU has been operating for more than a year in the test turbine, showing consistent data throughout the whole period. While the monitoring method and results are based on measurements on a single test turbine, the paper also link these to converter failure data from a large fleet of operating turbines.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2901662</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9653-5437</orcidid><orcidid>https://orcid.org/0000-0001-7804-6250</orcidid><orcidid>https://orcid.org/0000-0001-5737-1572</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2020-02, Vol.67 (2), p.1305-1315 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_2300338458 |
source | IEEE Electronic Library (IEL) |
subjects | Converters Diodes Emitters Insulated gate bipolar transistors Mathematical analysis Monitoring Multichip modules Parameter sensitivity pulsewidth modulated inverters Semiconductors Statistical methods Temperature measurement Temperature sensors Turbines Wind turbines |
title | Virtual Temperature Detection of Semiconductors in a Megawatt Field Converter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20Temperature%20Detection%20of%20Semiconductors%20in%20a%20Megawatt%20Field%20Converter&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Rannestad,%20Bjorn&rft.date=2020-02-01&rft.volume=67&rft.issue=2&rft.spage=1305&rft.epage=1315&rft.pages=1305-1315&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2901662&rft_dat=%3Cproquest_RIE%3E2300338458%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300338458&rft_id=info:pmid/&rft_ieee_id=8658003&rfr_iscdi=true |