Virtual Temperature Detection of Semiconductors in a Megawatt Field Converter

A converter monitoring unit (CMU) that monitors the power modules of the converter in a multimegawatt test wind turbine is presented in this paper. A method of calculating the virtual temperature (T_{v}) of the power semiconductors is laid out. Contrary to previous work, the method enables T_{v} cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2020-02, Vol.67 (2), p.1305-1315
Hauptverfasser: Rannestad, Bjorn, Fischer, Katharina, Nielsen, Peter, Gadgaard, Kristian, Munk-Nielsen, Stig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1315
container_issue 2
container_start_page 1305
container_title IEEE transactions on industrial electronics (1982)
container_volume 67
creator Rannestad, Bjorn
Fischer, Katharina
Nielsen, Peter
Gadgaard, Kristian
Munk-Nielsen, Stig
description A converter monitoring unit (CMU) that monitors the power modules of the converter in a multimegawatt test wind turbine is presented in this paper. A method of calculating the virtual temperature (T_{v}) of the power semiconductors is laid out. Contrary to previous work, the method enables T_{v} characterization of the semiconductors by means of sampled data during normal operation of the converter, without the need for special calibration routines. The dynamic operation of the wind turbine and the large amount of data sampled in the CMU enables a statistical approach to generate reference data for T_{v} calculations. The method was tested on machine side converter diodes of the test turbine, based on samples of collector-emitter voltage (vce_{\text{on}}) and current (i_{c}). Other temperature sensitive electrical parameters may also be used as input to the method. The CMU has been operating for more than a year in the test turbine, showing consistent data throughout the whole period. While the monitoring method and results are based on measurements on a single test turbine, the paper also link these to converter failure data from a large fleet of operating turbines.
doi_str_mv 10.1109/TIE.2019.2901662
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2300338458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8658003</ieee_id><sourcerecordid>2300338458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-44a70f5b58d266cea571a3f28b764cd86d861604da361418c644b32d57a76db53</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wU3A9dSXTL5mKbXVQosLq9uQybyRKe2kZjKK_94pLcKDuzn3PjiE3DKYMAbFw3oxm3BgxYQXwJTiZ2TEpNRZUQhzTkbAtckAhLokV123AWBCMjkiq48mpt5t6Rp3e4wu9RHpEyb0qQktDTV9w13jQ1v1PoXY0aaljq7w0_24lOi8wW1Fp6H9xpgwXpOL2m07vDnlmLzPZ-vpS7Z8fV5MH5eZ5wVLmRBOQy1LaSqulEcnNXN5zU2plfCVUcMxBaJyuWKCGa-EKHNeSe20qkqZj8n9cXcfw1ePXbKb0Md2eGl5DpDnRkgzUHCkfAxdF7G2-9jsXPy1DOxBmh2k2YM0e5I2VO6OlQYR_3GjpDms_gG422dI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300338458</pqid></control><display><type>article</type><title>Virtual Temperature Detection of Semiconductors in a Megawatt Field Converter</title><source>IEEE Electronic Library (IEL)</source><creator>Rannestad, Bjorn ; Fischer, Katharina ; Nielsen, Peter ; Gadgaard, Kristian ; Munk-Nielsen, Stig</creator><creatorcontrib>Rannestad, Bjorn ; Fischer, Katharina ; Nielsen, Peter ; Gadgaard, Kristian ; Munk-Nielsen, Stig</creatorcontrib><description><![CDATA[A converter monitoring unit (CMU) that monitors the power modules of the converter in a multimegawatt test wind turbine is presented in this paper. A method of calculating the virtual temperature (<inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula>) of the power semiconductors is laid out. Contrary to previous work, the method enables <inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula> characterization of the semiconductors by means of sampled data during normal operation of the converter, without the need for special calibration routines. The dynamic operation of the wind turbine and the large amount of data sampled in the CMU enables a statistical approach to generate reference data for <inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula> calculations. The method was tested on machine side converter diodes of the test turbine, based on samples of collector-emitter voltage (<inline-formula><tex-math notation="LaTeX">vce_{\text{on}}</tex-math></inline-formula>) and current (<inline-formula><tex-math notation="LaTeX">i_{c}</tex-math></inline-formula>). Other temperature sensitive electrical parameters may also be used as input to the method. The CMU has been operating for more than a year in the test turbine, showing consistent data throughout the whole period. While the monitoring method and results are based on measurements on a single test turbine, the paper also link these to converter failure data from a large fleet of operating turbines.]]></description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2901662</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Converters ; Diodes ; Emitters ; Insulated gate bipolar transistors ; Mathematical analysis ; Monitoring ; Multichip modules ; Parameter sensitivity ; pulsewidth modulated inverters ; Semiconductors ; Statistical methods ; Temperature measurement ; Temperature sensors ; Turbines ; Wind turbines</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-02, Vol.67 (2), p.1305-1315</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-44a70f5b58d266cea571a3f28b764cd86d861604da361418c644b32d57a76db53</citedby><cites>FETCH-LOGICAL-c291t-44a70f5b58d266cea571a3f28b764cd86d861604da361418c644b32d57a76db53</cites><orcidid>0000-0001-9653-5437 ; 0000-0001-7804-6250 ; 0000-0001-5737-1572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8658003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8658003$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rannestad, Bjorn</creatorcontrib><creatorcontrib>Fischer, Katharina</creatorcontrib><creatorcontrib>Nielsen, Peter</creatorcontrib><creatorcontrib>Gadgaard, Kristian</creatorcontrib><creatorcontrib>Munk-Nielsen, Stig</creatorcontrib><title>Virtual Temperature Detection of Semiconductors in a Megawatt Field Converter</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description><![CDATA[A converter monitoring unit (CMU) that monitors the power modules of the converter in a multimegawatt test wind turbine is presented in this paper. A method of calculating the virtual temperature (<inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula>) of the power semiconductors is laid out. Contrary to previous work, the method enables <inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula> characterization of the semiconductors by means of sampled data during normal operation of the converter, without the need for special calibration routines. The dynamic operation of the wind turbine and the large amount of data sampled in the CMU enables a statistical approach to generate reference data for <inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula> calculations. The method was tested on machine side converter diodes of the test turbine, based on samples of collector-emitter voltage (<inline-formula><tex-math notation="LaTeX">vce_{\text{on}}</tex-math></inline-formula>) and current (<inline-formula><tex-math notation="LaTeX">i_{c}</tex-math></inline-formula>). Other temperature sensitive electrical parameters may also be used as input to the method. The CMU has been operating for more than a year in the test turbine, showing consistent data throughout the whole period. While the monitoring method and results are based on measurements on a single test turbine, the paper also link these to converter failure data from a large fleet of operating turbines.]]></description><subject>Converters</subject><subject>Diodes</subject><subject>Emitters</subject><subject>Insulated gate bipolar transistors</subject><subject>Mathematical analysis</subject><subject>Monitoring</subject><subject>Multichip modules</subject><subject>Parameter sensitivity</subject><subject>pulsewidth modulated inverters</subject><subject>Semiconductors</subject><subject>Statistical methods</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Turbines</subject><subject>Wind turbines</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKt7wU3A9dSXTL5mKbXVQosLq9uQybyRKe2kZjKK_94pLcKDuzn3PjiE3DKYMAbFw3oxm3BgxYQXwJTiZ2TEpNRZUQhzTkbAtckAhLokV123AWBCMjkiq48mpt5t6Rp3e4wu9RHpEyb0qQktDTV9w13jQ1v1PoXY0aaljq7w0_24lOi8wW1Fp6H9xpgwXpOL2m07vDnlmLzPZ-vpS7Z8fV5MH5eZ5wVLmRBOQy1LaSqulEcnNXN5zU2plfCVUcMxBaJyuWKCGa-EKHNeSe20qkqZj8n9cXcfw1ePXbKb0Md2eGl5DpDnRkgzUHCkfAxdF7G2-9jsXPy1DOxBmh2k2YM0e5I2VO6OlQYR_3GjpDms_gG422dI</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Rannestad, Bjorn</creator><creator>Fischer, Katharina</creator><creator>Nielsen, Peter</creator><creator>Gadgaard, Kristian</creator><creator>Munk-Nielsen, Stig</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9653-5437</orcidid><orcidid>https://orcid.org/0000-0001-7804-6250</orcidid><orcidid>https://orcid.org/0000-0001-5737-1572</orcidid></search><sort><creationdate>20200201</creationdate><title>Virtual Temperature Detection of Semiconductors in a Megawatt Field Converter</title><author>Rannestad, Bjorn ; Fischer, Katharina ; Nielsen, Peter ; Gadgaard, Kristian ; Munk-Nielsen, Stig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-44a70f5b58d266cea571a3f28b764cd86d861604da361418c644b32d57a76db53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Converters</topic><topic>Diodes</topic><topic>Emitters</topic><topic>Insulated gate bipolar transistors</topic><topic>Mathematical analysis</topic><topic>Monitoring</topic><topic>Multichip modules</topic><topic>Parameter sensitivity</topic><topic>pulsewidth modulated inverters</topic><topic>Semiconductors</topic><topic>Statistical methods</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Turbines</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rannestad, Bjorn</creatorcontrib><creatorcontrib>Fischer, Katharina</creatorcontrib><creatorcontrib>Nielsen, Peter</creatorcontrib><creatorcontrib>Gadgaard, Kristian</creatorcontrib><creatorcontrib>Munk-Nielsen, Stig</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rannestad, Bjorn</au><au>Fischer, Katharina</au><au>Nielsen, Peter</au><au>Gadgaard, Kristian</au><au>Munk-Nielsen, Stig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual Temperature Detection of Semiconductors in a Megawatt Field Converter</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>67</volume><issue>2</issue><spage>1305</spage><epage>1315</epage><pages>1305-1315</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract><![CDATA[A converter monitoring unit (CMU) that monitors the power modules of the converter in a multimegawatt test wind turbine is presented in this paper. A method of calculating the virtual temperature (<inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula>) of the power semiconductors is laid out. Contrary to previous work, the method enables <inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula> characterization of the semiconductors by means of sampled data during normal operation of the converter, without the need for special calibration routines. The dynamic operation of the wind turbine and the large amount of data sampled in the CMU enables a statistical approach to generate reference data for <inline-formula><tex-math notation="LaTeX">T_{v}</tex-math></inline-formula> calculations. The method was tested on machine side converter diodes of the test turbine, based on samples of collector-emitter voltage (<inline-formula><tex-math notation="LaTeX">vce_{\text{on}}</tex-math></inline-formula>) and current (<inline-formula><tex-math notation="LaTeX">i_{c}</tex-math></inline-formula>). Other temperature sensitive electrical parameters may also be used as input to the method. The CMU has been operating for more than a year in the test turbine, showing consistent data throughout the whole period. While the monitoring method and results are based on measurements on a single test turbine, the paper also link these to converter failure data from a large fleet of operating turbines.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2901662</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9653-5437</orcidid><orcidid>https://orcid.org/0000-0001-7804-6250</orcidid><orcidid>https://orcid.org/0000-0001-5737-1572</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2020-02, Vol.67 (2), p.1305-1315
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2300338458
source IEEE Electronic Library (IEL)
subjects Converters
Diodes
Emitters
Insulated gate bipolar transistors
Mathematical analysis
Monitoring
Multichip modules
Parameter sensitivity
pulsewidth modulated inverters
Semiconductors
Statistical methods
Temperature measurement
Temperature sensors
Turbines
Wind turbines
title Virtual Temperature Detection of Semiconductors in a Megawatt Field Converter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20Temperature%20Detection%20of%20Semiconductors%20in%20a%20Megawatt%20Field%20Converter&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Rannestad,%20Bjorn&rft.date=2020-02-01&rft.volume=67&rft.issue=2&rft.spage=1305&rft.epage=1315&rft.pages=1305-1315&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2901662&rft_dat=%3Cproquest_RIE%3E2300338458%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300338458&rft_id=info:pmid/&rft_ieee_id=8658003&rfr_iscdi=true