Permanent Stiffness Reduction by Thermal Oxidation of Silicon
Stiffness in compliant micro mechanisms can negatively affect performance. Current methods for stiffness reduction in micro electro mechanical systems (MEMS) consume power, have a large footprint or are relatively complex to manufacture. In this paper stiffness is reduced by static balancing. A buil...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2019-10, Vol.28 (5), p.900-909 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 909 |
---|---|
container_issue | 5 |
container_start_page | 900 |
container_title | Journal of microelectromechanical systems |
container_volume | 28 |
creator | Kuppens, P. Reinier Herder, Just L. Tolou, Nima |
description | Stiffness in compliant micro mechanisms can negatively affect performance. Current methods for stiffness reduction in micro electro mechanical systems (MEMS) consume power, have a large footprint or are relatively complex to manufacture. In this paper stiffness is reduced by static balancing. A building block commonly used for stiffness reduction in large scale compliant mechanisms is made compatible with MEMS. Preloading required to create negative stiffness is obtained from residual film stress by thermal oxidation of silicon. Instead of buckling a plate spring by moving its end points, a SiO 2 film 1900 nm to 2500 nm thick will stretch micro-beams 24 μm wide, while the end points are fixed. To show efficacy of our method, the building block is coupled with a simple linear stage. However, the building block can readily be combined with other compliant micro mechanisms to reduce their stiffness. Statically balanced MEMS will enable novel designs in low-frequency sensor technology, low-frequency energy harvesting and pave the way to autonomous micro-robotics. We show a stiffness reduction of a factor 9 to 46. The balancing effect remained after SiO 2 removal, due to plastic deformation of the beams. [2019-0023]. |
doi_str_mv | 10.1109/JMEMS.2019.2935379 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2300338427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8822608</ieee_id><sourcerecordid>2300338427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-f627f8bb23dc8a474742c350a104c41b332d79986ca554a08f623698d7ce090b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8LnrdOvjbJwYOU-kVLxdZzyGYTTGl3a7IL9t-7_UDmMMPwPjPwIHSLYYQxqIf32WS2GBHAakQU5VSoMzTAiuEcMJfn_Qxc5AJzcYmuUloBYMZkMUCPHy5uTO3qNlu0wfvapZR9uqqzbWjqrNxly-99Yp3Nf0NlDsvGZ4uwDrapr9GFN-vkbk59iL6eJ8vxaz6dv7yNn6a5pVS1uS-I8LIsCa2sNEz0RSzlYDAwy3BJKamEUrKwhnNmQPYALZSshHWgoKRDdH-8u43NT-dSq1dNF-v-pSYUgFLJiOhT5JiysUkpOq-3MWxM3GkMeq9JHzTpvSZ90tRDd0coOOf-ASkJKUDSP5ImYlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300338427</pqid></control><display><type>article</type><title>Permanent Stiffness Reduction by Thermal Oxidation of Silicon</title><source>IEEE Xplore</source><creator>Kuppens, P. Reinier ; Herder, Just L. ; Tolou, Nima</creator><creatorcontrib>Kuppens, P. Reinier ; Herder, Just L. ; Tolou, Nima</creatorcontrib><description>Stiffness in compliant micro mechanisms can negatively affect performance. Current methods for stiffness reduction in micro electro mechanical systems (MEMS) consume power, have a large footprint or are relatively complex to manufacture. In this paper stiffness is reduced by static balancing. A building block commonly used for stiffness reduction in large scale compliant mechanisms is made compatible with MEMS. Preloading required to create negative stiffness is obtained from residual film stress by thermal oxidation of silicon. Instead of buckling a plate spring by moving its end points, a SiO 2 film 1900 nm to 2500 nm thick will stretch micro-beams 24 μm wide, while the end points are fixed. To show efficacy of our method, the building block is coupled with a simple linear stage. However, the building block can readily be combined with other compliant micro mechanisms to reduce their stiffness. Statically balanced MEMS will enable novel designs in low-frequency sensor technology, low-frequency energy harvesting and pave the way to autonomous micro-robotics. We show a stiffness reduction of a factor 9 to 46. The balancing effect remained after SiO 2 removal, due to plastic deformation of the beams. [2019-0023].</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2019.2935379</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automation ; Balancing ; Compliant mechanisms ; Deformation effects ; Energy harvesting ; Force ; Manufacturing engineering ; Mechanical systems ; MEMS ; Microbeams ; Micromechanical devices ; Oxidation ; Plastic deformation ; Power consumption ; Reduction ; Robotics ; Silicon ; Silicon dioxide ; Springs ; static balancing ; Stiffness ; stiffness reduction ; Stress ; Substrates ; thermal oxidation ; thin films</subject><ispartof>Journal of microelectromechanical systems, 2019-10, Vol.28 (5), p.900-909</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-f627f8bb23dc8a474742c350a104c41b332d79986ca554a08f623698d7ce090b3</citedby><cites>FETCH-LOGICAL-c339t-f627f8bb23dc8a474742c350a104c41b332d79986ca554a08f623698d7ce090b3</cites><orcidid>0000-0002-2770-0539 ; 0000-0002-9180-8827</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8822608$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8822608$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuppens, P. Reinier</creatorcontrib><creatorcontrib>Herder, Just L.</creatorcontrib><creatorcontrib>Tolou, Nima</creatorcontrib><title>Permanent Stiffness Reduction by Thermal Oxidation of Silicon</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Stiffness in compliant micro mechanisms can negatively affect performance. Current methods for stiffness reduction in micro electro mechanical systems (MEMS) consume power, have a large footprint or are relatively complex to manufacture. In this paper stiffness is reduced by static balancing. A building block commonly used for stiffness reduction in large scale compliant mechanisms is made compatible with MEMS. Preloading required to create negative stiffness is obtained from residual film stress by thermal oxidation of silicon. Instead of buckling a plate spring by moving its end points, a SiO 2 film 1900 nm to 2500 nm thick will stretch micro-beams 24 μm wide, while the end points are fixed. To show efficacy of our method, the building block is coupled with a simple linear stage. However, the building block can readily be combined with other compliant micro mechanisms to reduce their stiffness. Statically balanced MEMS will enable novel designs in low-frequency sensor technology, low-frequency energy harvesting and pave the way to autonomous micro-robotics. We show a stiffness reduction of a factor 9 to 46. The balancing effect remained after SiO 2 removal, due to plastic deformation of the beams. [2019-0023].</description><subject>Automation</subject><subject>Balancing</subject><subject>Compliant mechanisms</subject><subject>Deformation effects</subject><subject>Energy harvesting</subject><subject>Force</subject><subject>Manufacturing engineering</subject><subject>Mechanical systems</subject><subject>MEMS</subject><subject>Microbeams</subject><subject>Micromechanical devices</subject><subject>Oxidation</subject><subject>Plastic deformation</subject><subject>Power consumption</subject><subject>Reduction</subject><subject>Robotics</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Springs</subject><subject>static balancing</subject><subject>Stiffness</subject><subject>stiffness reduction</subject><subject>Stress</subject><subject>Substrates</subject><subject>thermal oxidation</subject><subject>thin films</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8LnrdOvjbJwYOU-kVLxdZzyGYTTGl3a7IL9t-7_UDmMMPwPjPwIHSLYYQxqIf32WS2GBHAakQU5VSoMzTAiuEcMJfn_Qxc5AJzcYmuUloBYMZkMUCPHy5uTO3qNlu0wfvapZR9uqqzbWjqrNxly-99Yp3Nf0NlDsvGZ4uwDrapr9GFN-vkbk59iL6eJ8vxaz6dv7yNn6a5pVS1uS-I8LIsCa2sNEz0RSzlYDAwy3BJKamEUrKwhnNmQPYALZSshHWgoKRDdH-8u43NT-dSq1dNF-v-pSYUgFLJiOhT5JiysUkpOq-3MWxM3GkMeq9JHzTpvSZ90tRDd0coOOf-ASkJKUDSP5ImYlQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Kuppens, P. Reinier</creator><creator>Herder, Just L.</creator><creator>Tolou, Nima</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2770-0539</orcidid><orcidid>https://orcid.org/0000-0002-9180-8827</orcidid></search><sort><creationdate>20191001</creationdate><title>Permanent Stiffness Reduction by Thermal Oxidation of Silicon</title><author>Kuppens, P. Reinier ; Herder, Just L. ; Tolou, Nima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-f627f8bb23dc8a474742c350a104c41b332d79986ca554a08f623698d7ce090b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automation</topic><topic>Balancing</topic><topic>Compliant mechanisms</topic><topic>Deformation effects</topic><topic>Energy harvesting</topic><topic>Force</topic><topic>Manufacturing engineering</topic><topic>Mechanical systems</topic><topic>MEMS</topic><topic>Microbeams</topic><topic>Micromechanical devices</topic><topic>Oxidation</topic><topic>Plastic deformation</topic><topic>Power consumption</topic><topic>Reduction</topic><topic>Robotics</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Springs</topic><topic>static balancing</topic><topic>Stiffness</topic><topic>stiffness reduction</topic><topic>Stress</topic><topic>Substrates</topic><topic>thermal oxidation</topic><topic>thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuppens, P. Reinier</creatorcontrib><creatorcontrib>Herder, Just L.</creatorcontrib><creatorcontrib>Tolou, Nima</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuppens, P. Reinier</au><au>Herder, Just L.</au><au>Tolou, Nima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permanent Stiffness Reduction by Thermal Oxidation of Silicon</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>28</volume><issue>5</issue><spage>900</spage><epage>909</epage><pages>900-909</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Stiffness in compliant micro mechanisms can negatively affect performance. Current methods for stiffness reduction in micro electro mechanical systems (MEMS) consume power, have a large footprint or are relatively complex to manufacture. In this paper stiffness is reduced by static balancing. A building block commonly used for stiffness reduction in large scale compliant mechanisms is made compatible with MEMS. Preloading required to create negative stiffness is obtained from residual film stress by thermal oxidation of silicon. Instead of buckling a plate spring by moving its end points, a SiO 2 film 1900 nm to 2500 nm thick will stretch micro-beams 24 μm wide, while the end points are fixed. To show efficacy of our method, the building block is coupled with a simple linear stage. However, the building block can readily be combined with other compliant micro mechanisms to reduce their stiffness. Statically balanced MEMS will enable novel designs in low-frequency sensor technology, low-frequency energy harvesting and pave the way to autonomous micro-robotics. We show a stiffness reduction of a factor 9 to 46. The balancing effect remained after SiO 2 removal, due to plastic deformation of the beams. [2019-0023].</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2019.2935379</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2770-0539</orcidid><orcidid>https://orcid.org/0000-0002-9180-8827</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2019-10, Vol.28 (5), p.900-909 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_proquest_journals_2300338427 |
source | IEEE Xplore |
subjects | Automation Balancing Compliant mechanisms Deformation effects Energy harvesting Force Manufacturing engineering Mechanical systems MEMS Microbeams Micromechanical devices Oxidation Plastic deformation Power consumption Reduction Robotics Silicon Silicon dioxide Springs static balancing Stiffness stiffness reduction Stress Substrates thermal oxidation thin films |
title | Permanent Stiffness Reduction by Thermal Oxidation of Silicon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permanent%20Stiffness%20Reduction%20by%20Thermal%20Oxidation%20of%20Silicon&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Kuppens,%20P.%20Reinier&rft.date=2019-10-01&rft.volume=28&rft.issue=5&rft.spage=900&rft.epage=909&rft.pages=900-909&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2019.2935379&rft_dat=%3Cproquest_RIE%3E2300338427%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300338427&rft_id=info:pmid/&rft_ieee_id=8822608&rfr_iscdi=true |