Permanent Stiffness Reduction by Thermal Oxidation of Silicon

Stiffness in compliant micro mechanisms can negatively affect performance. Current methods for stiffness reduction in micro electro mechanical systems (MEMS) consume power, have a large footprint or are relatively complex to manufacture. In this paper stiffness is reduced by static balancing. A buil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2019-10, Vol.28 (5), p.900-909
Hauptverfasser: Kuppens, P. Reinier, Herder, Just L., Tolou, Nima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 909
container_issue 5
container_start_page 900
container_title Journal of microelectromechanical systems
container_volume 28
creator Kuppens, P. Reinier
Herder, Just L.
Tolou, Nima
description Stiffness in compliant micro mechanisms can negatively affect performance. Current methods for stiffness reduction in micro electro mechanical systems (MEMS) consume power, have a large footprint or are relatively complex to manufacture. In this paper stiffness is reduced by static balancing. A building block commonly used for stiffness reduction in large scale compliant mechanisms is made compatible with MEMS. Preloading required to create negative stiffness is obtained from residual film stress by thermal oxidation of silicon. Instead of buckling a plate spring by moving its end points, a SiO 2 film 1900 nm to 2500 nm thick will stretch micro-beams 24 μm wide, while the end points are fixed. To show efficacy of our method, the building block is coupled with a simple linear stage. However, the building block can readily be combined with other compliant micro mechanisms to reduce their stiffness. Statically balanced MEMS will enable novel designs in low-frequency sensor technology, low-frequency energy harvesting and pave the way to autonomous micro-robotics. We show a stiffness reduction of a factor 9 to 46. The balancing effect remained after SiO 2 removal, due to plastic deformation of the beams. [2019-0023].
doi_str_mv 10.1109/JMEMS.2019.2935379
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2300338427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8822608</ieee_id><sourcerecordid>2300338427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-f627f8bb23dc8a474742c350a104c41b332d79986ca554a08f623698d7ce090b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8LnrdOvjbJwYOU-kVLxdZzyGYTTGl3a7IL9t-7_UDmMMPwPjPwIHSLYYQxqIf32WS2GBHAakQU5VSoMzTAiuEcMJfn_Qxc5AJzcYmuUloBYMZkMUCPHy5uTO3qNlu0wfvapZR9uqqzbWjqrNxly-99Yp3Nf0NlDsvGZ4uwDrapr9GFN-vkbk59iL6eJ8vxaz6dv7yNn6a5pVS1uS-I8LIsCa2sNEz0RSzlYDAwy3BJKamEUrKwhnNmQPYALZSshHWgoKRDdH-8u43NT-dSq1dNF-v-pSYUgFLJiOhT5JiysUkpOq-3MWxM3GkMeq9JHzTpvSZ90tRDd0coOOf-ASkJKUDSP5ImYlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300338427</pqid></control><display><type>article</type><title>Permanent Stiffness Reduction by Thermal Oxidation of Silicon</title><source>IEEE Xplore</source><creator>Kuppens, P. Reinier ; Herder, Just L. ; Tolou, Nima</creator><creatorcontrib>Kuppens, P. Reinier ; Herder, Just L. ; Tolou, Nima</creatorcontrib><description>Stiffness in compliant micro mechanisms can negatively affect performance. Current methods for stiffness reduction in micro electro mechanical systems (MEMS) consume power, have a large footprint or are relatively complex to manufacture. In this paper stiffness is reduced by static balancing. A building block commonly used for stiffness reduction in large scale compliant mechanisms is made compatible with MEMS. Preloading required to create negative stiffness is obtained from residual film stress by thermal oxidation of silicon. Instead of buckling a plate spring by moving its end points, a SiO 2 film 1900 nm to 2500 nm thick will stretch micro-beams 24 μm wide, while the end points are fixed. To show efficacy of our method, the building block is coupled with a simple linear stage. However, the building block can readily be combined with other compliant micro mechanisms to reduce their stiffness. Statically balanced MEMS will enable novel designs in low-frequency sensor technology, low-frequency energy harvesting and pave the way to autonomous micro-robotics. We show a stiffness reduction of a factor 9 to 46. The balancing effect remained after SiO 2 removal, due to plastic deformation of the beams. [2019-0023].</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2019.2935379</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automation ; Balancing ; Compliant mechanisms ; Deformation effects ; Energy harvesting ; Force ; Manufacturing engineering ; Mechanical systems ; MEMS ; Microbeams ; Micromechanical devices ; Oxidation ; Plastic deformation ; Power consumption ; Reduction ; Robotics ; Silicon ; Silicon dioxide ; Springs ; static balancing ; Stiffness ; stiffness reduction ; Stress ; Substrates ; thermal oxidation ; thin films</subject><ispartof>Journal of microelectromechanical systems, 2019-10, Vol.28 (5), p.900-909</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-f627f8bb23dc8a474742c350a104c41b332d79986ca554a08f623698d7ce090b3</citedby><cites>FETCH-LOGICAL-c339t-f627f8bb23dc8a474742c350a104c41b332d79986ca554a08f623698d7ce090b3</cites><orcidid>0000-0002-2770-0539 ; 0000-0002-9180-8827</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8822608$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8822608$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuppens, P. Reinier</creatorcontrib><creatorcontrib>Herder, Just L.</creatorcontrib><creatorcontrib>Tolou, Nima</creatorcontrib><title>Permanent Stiffness Reduction by Thermal Oxidation of Silicon</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Stiffness in compliant micro mechanisms can negatively affect performance. Current methods for stiffness reduction in micro electro mechanical systems (MEMS) consume power, have a large footprint or are relatively complex to manufacture. In this paper stiffness is reduced by static balancing. A building block commonly used for stiffness reduction in large scale compliant mechanisms is made compatible with MEMS. Preloading required to create negative stiffness is obtained from residual film stress by thermal oxidation of silicon. Instead of buckling a plate spring by moving its end points, a SiO 2 film 1900 nm to 2500 nm thick will stretch micro-beams 24 μm wide, while the end points are fixed. To show efficacy of our method, the building block is coupled with a simple linear stage. However, the building block can readily be combined with other compliant micro mechanisms to reduce their stiffness. Statically balanced MEMS will enable novel designs in low-frequency sensor technology, low-frequency energy harvesting and pave the way to autonomous micro-robotics. We show a stiffness reduction of a factor 9 to 46. The balancing effect remained after SiO 2 removal, due to plastic deformation of the beams. [2019-0023].</description><subject>Automation</subject><subject>Balancing</subject><subject>Compliant mechanisms</subject><subject>Deformation effects</subject><subject>Energy harvesting</subject><subject>Force</subject><subject>Manufacturing engineering</subject><subject>Mechanical systems</subject><subject>MEMS</subject><subject>Microbeams</subject><subject>Micromechanical devices</subject><subject>Oxidation</subject><subject>Plastic deformation</subject><subject>Power consumption</subject><subject>Reduction</subject><subject>Robotics</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Springs</subject><subject>static balancing</subject><subject>Stiffness</subject><subject>stiffness reduction</subject><subject>Stress</subject><subject>Substrates</subject><subject>thermal oxidation</subject><subject>thin films</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8LnrdOvjbJwYOU-kVLxdZzyGYTTGl3a7IL9t-7_UDmMMPwPjPwIHSLYYQxqIf32WS2GBHAakQU5VSoMzTAiuEcMJfn_Qxc5AJzcYmuUloBYMZkMUCPHy5uTO3qNlu0wfvapZR9uqqzbWjqrNxly-99Yp3Nf0NlDsvGZ4uwDrapr9GFN-vkbk59iL6eJ8vxaz6dv7yNn6a5pVS1uS-I8LIsCa2sNEz0RSzlYDAwy3BJKamEUrKwhnNmQPYALZSshHWgoKRDdH-8u43NT-dSq1dNF-v-pSYUgFLJiOhT5JiysUkpOq-3MWxM3GkMeq9JHzTpvSZ90tRDd0coOOf-ASkJKUDSP5ImYlQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Kuppens, P. Reinier</creator><creator>Herder, Just L.</creator><creator>Tolou, Nima</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2770-0539</orcidid><orcidid>https://orcid.org/0000-0002-9180-8827</orcidid></search><sort><creationdate>20191001</creationdate><title>Permanent Stiffness Reduction by Thermal Oxidation of Silicon</title><author>Kuppens, P. Reinier ; Herder, Just L. ; Tolou, Nima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-f627f8bb23dc8a474742c350a104c41b332d79986ca554a08f623698d7ce090b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automation</topic><topic>Balancing</topic><topic>Compliant mechanisms</topic><topic>Deformation effects</topic><topic>Energy harvesting</topic><topic>Force</topic><topic>Manufacturing engineering</topic><topic>Mechanical systems</topic><topic>MEMS</topic><topic>Microbeams</topic><topic>Micromechanical devices</topic><topic>Oxidation</topic><topic>Plastic deformation</topic><topic>Power consumption</topic><topic>Reduction</topic><topic>Robotics</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Springs</topic><topic>static balancing</topic><topic>Stiffness</topic><topic>stiffness reduction</topic><topic>Stress</topic><topic>Substrates</topic><topic>thermal oxidation</topic><topic>thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuppens, P. Reinier</creatorcontrib><creatorcontrib>Herder, Just L.</creatorcontrib><creatorcontrib>Tolou, Nima</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuppens, P. Reinier</au><au>Herder, Just L.</au><au>Tolou, Nima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permanent Stiffness Reduction by Thermal Oxidation of Silicon</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>28</volume><issue>5</issue><spage>900</spage><epage>909</epage><pages>900-909</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Stiffness in compliant micro mechanisms can negatively affect performance. Current methods for stiffness reduction in micro electro mechanical systems (MEMS) consume power, have a large footprint or are relatively complex to manufacture. In this paper stiffness is reduced by static balancing. A building block commonly used for stiffness reduction in large scale compliant mechanisms is made compatible with MEMS. Preloading required to create negative stiffness is obtained from residual film stress by thermal oxidation of silicon. Instead of buckling a plate spring by moving its end points, a SiO 2 film 1900 nm to 2500 nm thick will stretch micro-beams 24 μm wide, while the end points are fixed. To show efficacy of our method, the building block is coupled with a simple linear stage. However, the building block can readily be combined with other compliant micro mechanisms to reduce their stiffness. Statically balanced MEMS will enable novel designs in low-frequency sensor technology, low-frequency energy harvesting and pave the way to autonomous micro-robotics. We show a stiffness reduction of a factor 9 to 46. The balancing effect remained after SiO 2 removal, due to plastic deformation of the beams. [2019-0023].</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2019.2935379</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2770-0539</orcidid><orcidid>https://orcid.org/0000-0002-9180-8827</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2019-10, Vol.28 (5), p.900-909
issn 1057-7157
1941-0158
language eng
recordid cdi_proquest_journals_2300338427
source IEEE Xplore
subjects Automation
Balancing
Compliant mechanisms
Deformation effects
Energy harvesting
Force
Manufacturing engineering
Mechanical systems
MEMS
Microbeams
Micromechanical devices
Oxidation
Plastic deformation
Power consumption
Reduction
Robotics
Silicon
Silicon dioxide
Springs
static balancing
Stiffness
stiffness reduction
Stress
Substrates
thermal oxidation
thin films
title Permanent Stiffness Reduction by Thermal Oxidation of Silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permanent%20Stiffness%20Reduction%20by%20Thermal%20Oxidation%20of%20Silicon&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Kuppens,%20P.%20Reinier&rft.date=2019-10-01&rft.volume=28&rft.issue=5&rft.spage=900&rft.epage=909&rft.pages=900-909&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2019.2935379&rft_dat=%3Cproquest_RIE%3E2300338427%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300338427&rft_id=info:pmid/&rft_ieee_id=8822608&rfr_iscdi=true