Empirical modeling of die pressure, shaft torque, SME, and product temperature of rice flour in a corotating twin-screw extruder
Empirical models for predicting die pressure, product temperature, shaft torque, and specific mechanical energy (SME) input based on rice flour extrusion using a DNDL-44/28D Buhler twin-screw extruder are presented. The models incorporate the effects of shear rate, barrel temperature, moisture conte...
Gespeichert in:
Veröffentlicht in: | Cereal chemistry 2005-09, Vol.82 (5), p.582-587 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 587 |
---|---|
container_issue | 5 |
container_start_page | 582 |
container_title | Cereal chemistry |
container_volume | 82 |
creator | Lei, H.W Fulcher, R.G Ruan, R Van Lengerich, B |
description | Empirical models for predicting die pressure, product temperature, shaft torque, and specific mechanical energy (SME) input based on rice flour extrusion using a DNDL-44/28D Buhler twin-screw extruder are presented. The models incorporate the effects of shear rate, barrel temperature, moisture content, flow rate, and screw geometry. The models were tested using rice flour at various screw configurations and extrusion conditions. Die pressure is a function of moisture content, product temperature, and flow rate. By testing the die pressure model, we found that, within the experimental range tested, die pressure was not significantly affected by barrel temperatures and screw configurations. Product temperature and shaft torque are functions of shear rate, moisture content, flow rate, barrel temperature, and screw configuration. Introducing the effect of screw configuration into the models for temperature and shaft torque resulted in an overall improved model performance. Predictions of various models gave good results. Validations of various models were verified using different screw geometries and other processing variables with reasonable accuracy. Extrusion tests indicated that the developed predictive models can be of use for extrusion processing. |
doi_str_mv | 10.1094/CC-82-0582 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_230024257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1005825601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3532-bf7897c62c44ecb1275ad6a571edb42972176897da26d2468e0c07554fe42e5b3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EEkvhwh_AQuKCGhh_xckRRUuLVMSh9Gx57XFxlY0XO9HSGz8dR7sSt57skZ95PH5NyFsGnxj08vMwNB1vQHX8GdmwXopGtKJ7TjYA0DcgFH9JXpXyUEvBtNiQv9v9Iebo7Ej3yeMYp3uaAvUR6SFjKUvGS1p-2TDTOeXfS61uv28vqZ18BZJfXD3A_QGznSu79lYb0jCmJdM4UUtdymm282qej3Fqist4pPhnzovH_Jq8CHYs-Oa8XpC7r9ufw3Vz8-Pq2_DlpnFCCd7sgu567VrupES3Y1wr61urNEO_k7zXnOm2Et7y1nPZdggOtFIyoOSoduKCvD9569T1GWU2D3XCqV5puADgkitdoY8nyOVUSsZgDjnubX40DMwasBkG03GzBlzhD2ejLTW_kO3kYvnfoRl0nVg5OHHHOOLjE8a6vd6e1e9OLcEmY-9z1d7dcmACWP03BVL8A8iUklM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230024257</pqid></control><display><type>article</type><title>Empirical modeling of die pressure, shaft torque, SME, and product temperature of rice flour in a corotating twin-screw extruder</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lei, H.W ; Fulcher, R.G ; Ruan, R ; Van Lengerich, B</creator><creatorcontrib>Lei, H.W ; Fulcher, R.G ; Ruan, R ; Van Lengerich, B</creatorcontrib><description>Empirical models for predicting die pressure, product temperature, shaft torque, and specific mechanical energy (SME) input based on rice flour extrusion using a DNDL-44/28D Buhler twin-screw extruder are presented. The models incorporate the effects of shear rate, barrel temperature, moisture content, flow rate, and screw geometry. The models were tested using rice flour at various screw configurations and extrusion conditions. Die pressure is a function of moisture content, product temperature, and flow rate. By testing the die pressure model, we found that, within the experimental range tested, die pressure was not significantly affected by barrel temperatures and screw configurations. Product temperature and shaft torque are functions of shear rate, moisture content, flow rate, barrel temperature, and screw configuration. Introducing the effect of screw configuration into the models for temperature and shaft torque resulted in an overall improved model performance. Predictions of various models gave good results. Validations of various models were verified using different screw geometries and other processing variables with reasonable accuracy. Extrusion tests indicated that the developed predictive models can be of use for extrusion processing.</description><identifier>ISSN: 0009-0352</identifier><identifier>EISSN: 1943-3638</identifier><identifier>DOI: 10.1094/CC-82-0582</identifier><identifier>CODEN: CECHAF</identifier><language>eng</language><publisher>St. Paul, MN: The American Association of Cereal Chemists, Inc</publisher><subject>Biological and medical sciences ; Cereal and baking product industries ; energy ; extruded foods ; extruders ; extrusion ; Food industries ; Fundamental and applied biological sciences. Psychology ; prediction ; pressure ; rice flour ; screw geometry ; shear stress ; simulation models ; specific mechanical energy ; temperature ; torque ; twin-screw extruders ; velocity ; water content</subject><ispartof>Cereal chemistry, 2005-09, Vol.82 (5), p.582-587</ispartof><rights>AACC International</rights><rights>2005 INIST-CNRS</rights><rights>Copyright American Association of Cereal Chemists Sep/Oct 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3532-bf7897c62c44ecb1275ad6a571edb42972176897da26d2468e0c07554fe42e5b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1094%2FCC-82-0582$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1094%2FCC-82-0582$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17108832$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei, H.W</creatorcontrib><creatorcontrib>Fulcher, R.G</creatorcontrib><creatorcontrib>Ruan, R</creatorcontrib><creatorcontrib>Van Lengerich, B</creatorcontrib><title>Empirical modeling of die pressure, shaft torque, SME, and product temperature of rice flour in a corotating twin-screw extruder</title><title>Cereal chemistry</title><description>Empirical models for predicting die pressure, product temperature, shaft torque, and specific mechanical energy (SME) input based on rice flour extrusion using a DNDL-44/28D Buhler twin-screw extruder are presented. The models incorporate the effects of shear rate, barrel temperature, moisture content, flow rate, and screw geometry. The models were tested using rice flour at various screw configurations and extrusion conditions. Die pressure is a function of moisture content, product temperature, and flow rate. By testing the die pressure model, we found that, within the experimental range tested, die pressure was not significantly affected by barrel temperatures and screw configurations. Product temperature and shaft torque are functions of shear rate, moisture content, flow rate, barrel temperature, and screw configuration. Introducing the effect of screw configuration into the models for temperature and shaft torque resulted in an overall improved model performance. Predictions of various models gave good results. Validations of various models were verified using different screw geometries and other processing variables with reasonable accuracy. Extrusion tests indicated that the developed predictive models can be of use for extrusion processing.</description><subject>Biological and medical sciences</subject><subject>Cereal and baking product industries</subject><subject>energy</subject><subject>extruded foods</subject><subject>extruders</subject><subject>extrusion</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>prediction</subject><subject>pressure</subject><subject>rice flour</subject><subject>screw geometry</subject><subject>shear stress</subject><subject>simulation models</subject><subject>specific mechanical energy</subject><subject>temperature</subject><subject>torque</subject><subject>twin-screw extruders</subject><subject>velocity</subject><subject>water content</subject><issn>0009-0352</issn><issn>1943-3638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1v1DAQhi0EEkvhwh_AQuKCGhh_xckRRUuLVMSh9Gx57XFxlY0XO9HSGz8dR7sSt57skZ95PH5NyFsGnxj08vMwNB1vQHX8GdmwXopGtKJ7TjYA0DcgFH9JXpXyUEvBtNiQv9v9Iebo7Ej3yeMYp3uaAvUR6SFjKUvGS1p-2TDTOeXfS61uv28vqZ18BZJfXD3A_QGznSu79lYb0jCmJdM4UUtdymm282qej3Fqist4pPhnzovH_Jq8CHYs-Oa8XpC7r9ufw3Vz8-Pq2_DlpnFCCd7sgu567VrupES3Y1wr61urNEO_k7zXnOm2Et7y1nPZdggOtFIyoOSoduKCvD9569T1GWU2D3XCqV5puADgkitdoY8nyOVUSsZgDjnubX40DMwasBkG03GzBlzhD2ejLTW_kO3kYvnfoRl0nVg5OHHHOOLjE8a6vd6e1e9OLcEmY-9z1d7dcmACWP03BVL8A8iUklM</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Lei, H.W</creator><creator>Fulcher, R.G</creator><creator>Ruan, R</creator><creator>Van Lengerich, B</creator><general>The American Association of Cereal Chemists, Inc</general><general>American Association of Cereal Chemists</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200509</creationdate><title>Empirical modeling of die pressure, shaft torque, SME, and product temperature of rice flour in a corotating twin-screw extruder</title><author>Lei, H.W ; Fulcher, R.G ; Ruan, R ; Van Lengerich, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3532-bf7897c62c44ecb1275ad6a571edb42972176897da26d2468e0c07554fe42e5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological and medical sciences</topic><topic>Cereal and baking product industries</topic><topic>energy</topic><topic>extruded foods</topic><topic>extruders</topic><topic>extrusion</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>prediction</topic><topic>pressure</topic><topic>rice flour</topic><topic>screw geometry</topic><topic>shear stress</topic><topic>simulation models</topic><topic>specific mechanical energy</topic><topic>temperature</topic><topic>torque</topic><topic>twin-screw extruders</topic><topic>velocity</topic><topic>water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, H.W</creatorcontrib><creatorcontrib>Fulcher, R.G</creatorcontrib><creatorcontrib>Ruan, R</creatorcontrib><creatorcontrib>Van Lengerich, B</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Cereal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, H.W</au><au>Fulcher, R.G</au><au>Ruan, R</au><au>Van Lengerich, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical modeling of die pressure, shaft torque, SME, and product temperature of rice flour in a corotating twin-screw extruder</atitle><jtitle>Cereal chemistry</jtitle><date>2005-09</date><risdate>2005</risdate><volume>82</volume><issue>5</issue><spage>582</spage><epage>587</epage><pages>582-587</pages><issn>0009-0352</issn><eissn>1943-3638</eissn><coden>CECHAF</coden><abstract>Empirical models for predicting die pressure, product temperature, shaft torque, and specific mechanical energy (SME) input based on rice flour extrusion using a DNDL-44/28D Buhler twin-screw extruder are presented. The models incorporate the effects of shear rate, barrel temperature, moisture content, flow rate, and screw geometry. The models were tested using rice flour at various screw configurations and extrusion conditions. Die pressure is a function of moisture content, product temperature, and flow rate. By testing the die pressure model, we found that, within the experimental range tested, die pressure was not significantly affected by barrel temperatures and screw configurations. Product temperature and shaft torque are functions of shear rate, moisture content, flow rate, barrel temperature, and screw configuration. Introducing the effect of screw configuration into the models for temperature and shaft torque resulted in an overall improved model performance. Predictions of various models gave good results. Validations of various models were verified using different screw geometries and other processing variables with reasonable accuracy. Extrusion tests indicated that the developed predictive models can be of use for extrusion processing.</abstract><cop>St. Paul, MN</cop><pub>The American Association of Cereal Chemists, Inc</pub><doi>10.1094/CC-82-0582</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-0352 |
ispartof | Cereal chemistry, 2005-09, Vol.82 (5), p.582-587 |
issn | 0009-0352 1943-3638 |
language | eng |
recordid | cdi_proquest_journals_230024257 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Biological and medical sciences Cereal and baking product industries energy extruded foods extruders extrusion Food industries Fundamental and applied biological sciences. Psychology prediction pressure rice flour screw geometry shear stress simulation models specific mechanical energy temperature torque twin-screw extruders velocity water content |
title | Empirical modeling of die pressure, shaft torque, SME, and product temperature of rice flour in a corotating twin-screw extruder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20modeling%20of%20die%20pressure,%20shaft%20torque,%20SME,%20and%20product%20temperature%20of%20rice%20flour%20in%20a%20corotating%20twin-screw%20extruder&rft.jtitle=Cereal%20chemistry&rft.au=Lei,%20H.W&rft.date=2005-09&rft.volume=82&rft.issue=5&rft.spage=582&rft.epage=587&rft.pages=582-587&rft.issn=0009-0352&rft.eissn=1943-3638&rft.coden=CECHAF&rft_id=info:doi/10.1094/CC-82-0582&rft_dat=%3Cproquest_cross%3E1005825601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230024257&rft_id=info:pmid/&rfr_iscdi=true |