Basis properties of the eigenfunctions of two-interval Sturm–Liouville problems

In this paper a Sturm–Liouville equation together with eigenparameter-dependent boundary-transmission conditions are considered on two disjoint intervals. We construct the resolvent operator and Green’s function and obtain asymptotic approximate formulas for eigenvalues and corresponding eigenfuncti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis and mathematical physics 2019-09, Vol.9 (3), p.1363-1382
Hauptverfasser: Mukhtarov, O. Sh, Aydemir, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1382
container_issue 3
container_start_page 1363
container_title Analysis and mathematical physics
container_volume 9
creator Mukhtarov, O. Sh
Aydemir, K.
description In this paper a Sturm–Liouville equation together with eigenparameter-dependent boundary-transmission conditions are considered on two disjoint intervals. We construct the resolvent operator and Green’s function and obtain asymptotic approximate formulas for eigenvalues and corresponding eigenfunctions. The obtained results are implemented to the investigation of the basis properties of the system of eigenfunctions in the Lebesgue space L 2 with new measures. In particular, we show that the eigenfunction expansion series regarding the convergence behaves in the same way as an ordinary Fourier series.
doi_str_mv 10.1007/s13324-018-0242-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300228029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300228029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-df2462317f6470b7009c7fec811eb4d8308268c9c74cab0a744ae2e531c717ed3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWGofwN2A6-jJpUm61OINCiIquAsz6ZmaMp2pSabiznfwDX0SZxjRlatz-Pkv8BFyzOCUAeizyITgkgIzFLjk1OyREVNKUi6mz_u_vzKHZBLjGgCYnCqp9IjcX-TRx2wbmi2G5DFmTZmlF8zQr7Au29ol39SD-tZQXycMu7zKHlIbNl8fnwvftDtfVdhXFBVu4hE5KPMq4uTnjsnT1eXj_IYu7q5v5-cL6gRTiS5LLhUXTJdKaig0wMzpEp1hDAu5NAIMV8Z1onR5AbmWMkeOU8GcZhqXYkxOht5u-LXFmOy6aUPdTVouADg3wGediw0uF5oYA5Z2G_wmD--Wge3h2QGe7eDZHp41XYYPmdh56xWGv-b_Q980-HLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300228029</pqid></control><display><type>article</type><title>Basis properties of the eigenfunctions of two-interval Sturm–Liouville problems</title><source>SpringerNature Journals</source><creator>Mukhtarov, O. Sh ; Aydemir, K.</creator><creatorcontrib>Mukhtarov, O. Sh ; Aydemir, K.</creatorcontrib><description>In this paper a Sturm–Liouville equation together with eigenparameter-dependent boundary-transmission conditions are considered on two disjoint intervals. We construct the resolvent operator and Green’s function and obtain asymptotic approximate formulas for eigenvalues and corresponding eigenfunctions. The obtained results are implemented to the investigation of the basis properties of the system of eigenfunctions in the Lebesgue space L 2 with new measures. In particular, we show that the eigenfunction expansion series regarding the convergence behaves in the same way as an ordinary Fourier series.</description><identifier>ISSN: 1664-2368</identifier><identifier>EISSN: 1664-235X</identifier><identifier>DOI: 10.1007/s13324-018-0242-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Eigenvalues ; Eigenvectors ; Fourier series ; Liouville equations ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics)</subject><ispartof>Analysis and mathematical physics, 2019-09, Vol.9 (3), p.1363-1382</ispartof><rights>Springer Nature Switzerland AG 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-df2462317f6470b7009c7fec811eb4d8308268c9c74cab0a744ae2e531c717ed3</citedby><cites>FETCH-LOGICAL-c316t-df2462317f6470b7009c7fec811eb4d8308268c9c74cab0a744ae2e531c717ed3</cites><orcidid>0000-0001-7480-6857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13324-018-0242-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13324-018-0242-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mukhtarov, O. Sh</creatorcontrib><creatorcontrib>Aydemir, K.</creatorcontrib><title>Basis properties of the eigenfunctions of two-interval Sturm–Liouville problems</title><title>Analysis and mathematical physics</title><addtitle>Anal.Math.Phys</addtitle><description>In this paper a Sturm–Liouville equation together with eigenparameter-dependent boundary-transmission conditions are considered on two disjoint intervals. We construct the resolvent operator and Green’s function and obtain asymptotic approximate formulas for eigenvalues and corresponding eigenfunctions. The obtained results are implemented to the investigation of the basis properties of the system of eigenfunctions in the Lebesgue space L 2 with new measures. In particular, we show that the eigenfunction expansion series regarding the convergence behaves in the same way as an ordinary Fourier series.</description><subject>Analysis</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Fourier series</subject><subject>Liouville equations</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><issn>1664-2368</issn><issn>1664-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWGofwN2A6-jJpUm61OINCiIquAsz6ZmaMp2pSabiznfwDX0SZxjRlatz-Pkv8BFyzOCUAeizyITgkgIzFLjk1OyREVNKUi6mz_u_vzKHZBLjGgCYnCqp9IjcX-TRx2wbmi2G5DFmTZmlF8zQr7Au29ol39SD-tZQXycMu7zKHlIbNl8fnwvftDtfVdhXFBVu4hE5KPMq4uTnjsnT1eXj_IYu7q5v5-cL6gRTiS5LLhUXTJdKaig0wMzpEp1hDAu5NAIMV8Z1onR5AbmWMkeOU8GcZhqXYkxOht5u-LXFmOy6aUPdTVouADg3wGediw0uF5oYA5Z2G_wmD--Wge3h2QGe7eDZHp41XYYPmdh56xWGv-b_Q980-HLs</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Mukhtarov, O. Sh</creator><creator>Aydemir, K.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7480-6857</orcidid></search><sort><creationdate>20190901</creationdate><title>Basis properties of the eigenfunctions of two-interval Sturm–Liouville problems</title><author>Mukhtarov, O. Sh ; Aydemir, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-df2462317f6470b7009c7fec811eb4d8308268c9c74cab0a744ae2e531c717ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Fourier series</topic><topic>Liouville equations</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukhtarov, O. Sh</creatorcontrib><creatorcontrib>Aydemir, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Analysis and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukhtarov, O. Sh</au><au>Aydemir, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basis properties of the eigenfunctions of two-interval Sturm–Liouville problems</atitle><jtitle>Analysis and mathematical physics</jtitle><stitle>Anal.Math.Phys</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>9</volume><issue>3</issue><spage>1363</spage><epage>1382</epage><pages>1363-1382</pages><issn>1664-2368</issn><eissn>1664-235X</eissn><abstract>In this paper a Sturm–Liouville equation together with eigenparameter-dependent boundary-transmission conditions are considered on two disjoint intervals. We construct the resolvent operator and Green’s function and obtain asymptotic approximate formulas for eigenvalues and corresponding eigenfunctions. The obtained results are implemented to the investigation of the basis properties of the system of eigenfunctions in the Lebesgue space L 2 with new measures. In particular, we show that the eigenfunction expansion series regarding the convergence behaves in the same way as an ordinary Fourier series.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13324-018-0242-8</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7480-6857</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1664-2368
ispartof Analysis and mathematical physics, 2019-09, Vol.9 (3), p.1363-1382
issn 1664-2368
1664-235X
language eng
recordid cdi_proquest_journals_2300228029
source SpringerNature Journals
subjects Analysis
Eigenvalues
Eigenvectors
Fourier series
Liouville equations
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Operators (mathematics)
title Basis properties of the eigenfunctions of two-interval Sturm–Liouville problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A18%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basis%20properties%20of%20the%20eigenfunctions%20of%20two-interval%20Sturm%E2%80%93Liouville%20problems&rft.jtitle=Analysis%20and%20mathematical%20physics&rft.au=Mukhtarov,%20O.%20Sh&rft.date=2019-09-01&rft.volume=9&rft.issue=3&rft.spage=1363&rft.epage=1382&rft.pages=1363-1382&rft.issn=1664-2368&rft.eissn=1664-235X&rft_id=info:doi/10.1007/s13324-018-0242-8&rft_dat=%3Cproquest_cross%3E2300228029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300228029&rft_id=info:pmid/&rfr_iscdi=true