Basis properties of the eigenfunctions of two-interval Sturm–Liouville problems

In this paper a Sturm–Liouville equation together with eigenparameter-dependent boundary-transmission conditions are considered on two disjoint intervals. We construct the resolvent operator and Green’s function and obtain asymptotic approximate formulas for eigenvalues and corresponding eigenfuncti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis and mathematical physics 2019-09, Vol.9 (3), p.1363-1382
Hauptverfasser: Mukhtarov, O. Sh, Aydemir, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper a Sturm–Liouville equation together with eigenparameter-dependent boundary-transmission conditions are considered on two disjoint intervals. We construct the resolvent operator and Green’s function and obtain asymptotic approximate formulas for eigenvalues and corresponding eigenfunctions. The obtained results are implemented to the investigation of the basis properties of the system of eigenfunctions in the Lebesgue space L 2 with new measures. In particular, we show that the eigenfunction expansion series regarding the convergence behaves in the same way as an ordinary Fourier series.
ISSN:1664-2368
1664-235X
DOI:10.1007/s13324-018-0242-8