Direct and inverse problems for vector logarithmic potentials with external fields
We consider extremal problems for the energy of the logarithmic potential with external fields closely related with the inverse spectral problem method. The method is based on the relations between the external field and the supports of the equilibrium measures which were discovered in the pioneerin...
Gespeichert in:
Veröffentlicht in: | Analysis and mathematical physics 2019-09, Vol.9 (3), p.919-935 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 935 |
---|---|
container_issue | 3 |
container_start_page | 919 |
container_title | Analysis and mathematical physics |
container_volume | 9 |
creator | Aptekarev, A. I. Lapik, M. A. Lysov, V. G. |
description | We consider extremal problems for the energy of the logarithmic potential with external fields closely related with the inverse spectral problem method. The method is based on the relations between the external field and the supports of the equilibrium measures which were discovered in the pioneering papers of Rakhmanov, Saff, Mhaskar and Buyarov (
RSMB-method
). We propose a generalization of the RSMB-method for the vector of measures with matrix of interaction between components. |
doi_str_mv | 10.1007/s13324-019-00297-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300227925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300227925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e72a02f7a1145e9d64d29304f708cdb52d3b5e6521fb467632067d96571edf913</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKuA69E8ZpLJUuoTCoIouAuZyU1Nmc7UJK36700d0Z2re7nnnMvhQ-iUknNKiLyIlHNWFoSqghCmZFEfoAkVoiwYr14Of3dRH6NZjCtCCC0rUQo5QY9XPkCbsOkt9v0OQgS8CUPTwTpiNwS8y2oe3bA0wafXtW_xZkjQJ2-6iN_zCcNHgtCbDjsPnY0n6MhlDWY_c4qeb66f5nfF4uH2fn65KFpOVSpAMkOYk4bmMqCsKC1TnJROkrq1TcUsbyoQFaOuyVUFZ0RIq0QlKVinKJ-is_Fv7vu2hZj0atjue0TNeAbBpGJVdrHR1YYhxgBOb4Jfm_CpKdF7fHrEpzM-_Y1P1znEx1DM5n4J4e_1P6kvm7tydw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300227925</pqid></control><display><type>article</type><title>Direct and inverse problems for vector logarithmic potentials with external fields</title><source>SpringerLink Journals - AutoHoldings</source><creator>Aptekarev, A. I. ; Lapik, M. A. ; Lysov, V. G.</creator><creatorcontrib>Aptekarev, A. I. ; Lapik, M. A. ; Lysov, V. G.</creatorcontrib><description>We consider extremal problems for the energy of the logarithmic potential with external fields closely related with the inverse spectral problem method. The method is based on the relations between the external field and the supports of the equilibrium measures which were discovered in the pioneering papers of Rakhmanov, Saff, Mhaskar and Buyarov (
RSMB-method
). We propose a generalization of the RSMB-method for the vector of measures with matrix of interaction between components.</description><identifier>ISSN: 1664-2368</identifier><identifier>EISSN: 1664-235X</identifier><identifier>DOI: 10.1007/s13324-019-00297-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Inverse problems ; Mathematical analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Matrix algebra ; Matrix methods</subject><ispartof>Analysis and mathematical physics, 2019-09, Vol.9 (3), p.919-935</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e72a02f7a1145e9d64d29304f708cdb52d3b5e6521fb467632067d96571edf913</citedby><cites>FETCH-LOGICAL-c319t-e72a02f7a1145e9d64d29304f708cdb52d3b5e6521fb467632067d96571edf913</cites><orcidid>0000-0002-3395-3030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13324-019-00297-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13324-019-00297-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Aptekarev, A. I.</creatorcontrib><creatorcontrib>Lapik, M. A.</creatorcontrib><creatorcontrib>Lysov, V. G.</creatorcontrib><title>Direct and inverse problems for vector logarithmic potentials with external fields</title><title>Analysis and mathematical physics</title><addtitle>Anal.Math.Phys</addtitle><description>We consider extremal problems for the energy of the logarithmic potential with external fields closely related with the inverse spectral problem method. The method is based on the relations between the external field and the supports of the equilibrium measures which were discovered in the pioneering papers of Rakhmanov, Saff, Mhaskar and Buyarov (
RSMB-method
). We propose a generalization of the RSMB-method for the vector of measures with matrix of interaction between components.</description><subject>Analysis</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><issn>1664-2368</issn><issn>1664-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGr_gKuA69E8ZpLJUuoTCoIouAuZyU1Nmc7UJK36700d0Z2re7nnnMvhQ-iUknNKiLyIlHNWFoSqghCmZFEfoAkVoiwYr14Of3dRH6NZjCtCCC0rUQo5QY9XPkCbsOkt9v0OQgS8CUPTwTpiNwS8y2oe3bA0wafXtW_xZkjQJ2-6iN_zCcNHgtCbDjsPnY0n6MhlDWY_c4qeb66f5nfF4uH2fn65KFpOVSpAMkOYk4bmMqCsKC1TnJROkrq1TcUsbyoQFaOuyVUFZ0RIq0QlKVinKJ-is_Fv7vu2hZj0atjue0TNeAbBpGJVdrHR1YYhxgBOb4Jfm_CpKdF7fHrEpzM-_Y1P1znEx1DM5n4J4e_1P6kvm7tydw</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Aptekarev, A. I.</creator><creator>Lapik, M. A.</creator><creator>Lysov, V. G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3395-3030</orcidid></search><sort><creationdate>20190901</creationdate><title>Direct and inverse problems for vector logarithmic potentials with external fields</title><author>Aptekarev, A. I. ; Lapik, M. A. ; Lysov, V. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e72a02f7a1145e9d64d29304f708cdb52d3b5e6521fb467632067d96571edf913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aptekarev, A. I.</creatorcontrib><creatorcontrib>Lapik, M. A.</creatorcontrib><creatorcontrib>Lysov, V. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Analysis and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aptekarev, A. I.</au><au>Lapik, M. A.</au><au>Lysov, V. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct and inverse problems for vector logarithmic potentials with external fields</atitle><jtitle>Analysis and mathematical physics</jtitle><stitle>Anal.Math.Phys</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>9</volume><issue>3</issue><spage>919</spage><epage>935</epage><pages>919-935</pages><issn>1664-2368</issn><eissn>1664-235X</eissn><abstract>We consider extremal problems for the energy of the logarithmic potential with external fields closely related with the inverse spectral problem method. The method is based on the relations between the external field and the supports of the equilibrium measures which were discovered in the pioneering papers of Rakhmanov, Saff, Mhaskar and Buyarov (
RSMB-method
). We propose a generalization of the RSMB-method for the vector of measures with matrix of interaction between components.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13324-019-00297-8</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3395-3030</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-2368 |
ispartof | Analysis and mathematical physics, 2019-09, Vol.9 (3), p.919-935 |
issn | 1664-2368 1664-235X |
language | eng |
recordid | cdi_proquest_journals_2300227925 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Inverse problems Mathematical analysis Mathematical Methods in Physics Mathematics Mathematics and Statistics Matrix algebra Matrix methods |
title | Direct and inverse problems for vector logarithmic potentials with external fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20and%20inverse%20problems%20for%20vector%20logarithmic%20potentials%20with%20external%20fields&rft.jtitle=Analysis%20and%20mathematical%20physics&rft.au=Aptekarev,%20A.%20I.&rft.date=2019-09-01&rft.volume=9&rft.issue=3&rft.spage=919&rft.epage=935&rft.pages=919-935&rft.issn=1664-2368&rft.eissn=1664-235X&rft_id=info:doi/10.1007/s13324-019-00297-8&rft_dat=%3Cproquest_cross%3E2300227925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300227925&rft_id=info:pmid/&rfr_iscdi=true |