Direct and inverse problems for vector logarithmic potentials with external fields

We consider extremal problems for the energy of the logarithmic potential with external fields closely related with the inverse spectral problem method. The method is based on the relations between the external field and the supports of the equilibrium measures which were discovered in the pioneerin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis and mathematical physics 2019-09, Vol.9 (3), p.919-935
Hauptverfasser: Aptekarev, A. I., Lapik, M. A., Lysov, V. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 935
container_issue 3
container_start_page 919
container_title Analysis and mathematical physics
container_volume 9
creator Aptekarev, A. I.
Lapik, M. A.
Lysov, V. G.
description We consider extremal problems for the energy of the logarithmic potential with external fields closely related with the inverse spectral problem method. The method is based on the relations between the external field and the supports of the equilibrium measures which were discovered in the pioneering papers of Rakhmanov, Saff, Mhaskar and Buyarov ( RSMB-method ). We propose a generalization of the RSMB-method for the vector of measures with matrix of interaction between components.
doi_str_mv 10.1007/s13324-019-00297-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300227925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300227925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e72a02f7a1145e9d64d29304f708cdb52d3b5e6521fb467632067d96571edf913</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKuA69E8ZpLJUuoTCoIouAuZyU1Nmc7UJK36700d0Z2re7nnnMvhQ-iUknNKiLyIlHNWFoSqghCmZFEfoAkVoiwYr14Of3dRH6NZjCtCCC0rUQo5QY9XPkCbsOkt9v0OQgS8CUPTwTpiNwS8y2oe3bA0wafXtW_xZkjQJ2-6iN_zCcNHgtCbDjsPnY0n6MhlDWY_c4qeb66f5nfF4uH2fn65KFpOVSpAMkOYk4bmMqCsKC1TnJROkrq1TcUsbyoQFaOuyVUFZ0RIq0QlKVinKJ-is_Fv7vu2hZj0atjue0TNeAbBpGJVdrHR1YYhxgBOb4Jfm_CpKdF7fHrEpzM-_Y1P1znEx1DM5n4J4e_1P6kvm7tydw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300227925</pqid></control><display><type>article</type><title>Direct and inverse problems for vector logarithmic potentials with external fields</title><source>SpringerLink Journals - AutoHoldings</source><creator>Aptekarev, A. I. ; Lapik, M. A. ; Lysov, V. G.</creator><creatorcontrib>Aptekarev, A. I. ; Lapik, M. A. ; Lysov, V. G.</creatorcontrib><description>We consider extremal problems for the energy of the logarithmic potential with external fields closely related with the inverse spectral problem method. The method is based on the relations between the external field and the supports of the equilibrium measures which were discovered in the pioneering papers of Rakhmanov, Saff, Mhaskar and Buyarov ( RSMB-method ). We propose a generalization of the RSMB-method for the vector of measures with matrix of interaction between components.</description><identifier>ISSN: 1664-2368</identifier><identifier>EISSN: 1664-235X</identifier><identifier>DOI: 10.1007/s13324-019-00297-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Inverse problems ; Mathematical analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Matrix algebra ; Matrix methods</subject><ispartof>Analysis and mathematical physics, 2019-09, Vol.9 (3), p.919-935</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e72a02f7a1145e9d64d29304f708cdb52d3b5e6521fb467632067d96571edf913</citedby><cites>FETCH-LOGICAL-c319t-e72a02f7a1145e9d64d29304f708cdb52d3b5e6521fb467632067d96571edf913</cites><orcidid>0000-0002-3395-3030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13324-019-00297-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13324-019-00297-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Aptekarev, A. I.</creatorcontrib><creatorcontrib>Lapik, M. A.</creatorcontrib><creatorcontrib>Lysov, V. G.</creatorcontrib><title>Direct and inverse problems for vector logarithmic potentials with external fields</title><title>Analysis and mathematical physics</title><addtitle>Anal.Math.Phys</addtitle><description>We consider extremal problems for the energy of the logarithmic potential with external fields closely related with the inverse spectral problem method. The method is based on the relations between the external field and the supports of the equilibrium measures which were discovered in the pioneering papers of Rakhmanov, Saff, Mhaskar and Buyarov ( RSMB-method ). We propose a generalization of the RSMB-method for the vector of measures with matrix of interaction between components.</description><subject>Analysis</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><issn>1664-2368</issn><issn>1664-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGr_gKuA69E8ZpLJUuoTCoIouAuZyU1Nmc7UJK36700d0Z2re7nnnMvhQ-iUknNKiLyIlHNWFoSqghCmZFEfoAkVoiwYr14Of3dRH6NZjCtCCC0rUQo5QY9XPkCbsOkt9v0OQgS8CUPTwTpiNwS8y2oe3bA0wafXtW_xZkjQJ2-6iN_zCcNHgtCbDjsPnY0n6MhlDWY_c4qeb66f5nfF4uH2fn65KFpOVSpAMkOYk4bmMqCsKC1TnJROkrq1TcUsbyoQFaOuyVUFZ0RIq0QlKVinKJ-is_Fv7vu2hZj0atjue0TNeAbBpGJVdrHR1YYhxgBOb4Jfm_CpKdF7fHrEpzM-_Y1P1znEx1DM5n4J4e_1P6kvm7tydw</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Aptekarev, A. I.</creator><creator>Lapik, M. A.</creator><creator>Lysov, V. G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3395-3030</orcidid></search><sort><creationdate>20190901</creationdate><title>Direct and inverse problems for vector logarithmic potentials with external fields</title><author>Aptekarev, A. I. ; Lapik, M. A. ; Lysov, V. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e72a02f7a1145e9d64d29304f708cdb52d3b5e6521fb467632067d96571edf913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aptekarev, A. I.</creatorcontrib><creatorcontrib>Lapik, M. A.</creatorcontrib><creatorcontrib>Lysov, V. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Analysis and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aptekarev, A. I.</au><au>Lapik, M. A.</au><au>Lysov, V. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct and inverse problems for vector logarithmic potentials with external fields</atitle><jtitle>Analysis and mathematical physics</jtitle><stitle>Anal.Math.Phys</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>9</volume><issue>3</issue><spage>919</spage><epage>935</epage><pages>919-935</pages><issn>1664-2368</issn><eissn>1664-235X</eissn><abstract>We consider extremal problems for the energy of the logarithmic potential with external fields closely related with the inverse spectral problem method. The method is based on the relations between the external field and the supports of the equilibrium measures which were discovered in the pioneering papers of Rakhmanov, Saff, Mhaskar and Buyarov ( RSMB-method ). We propose a generalization of the RSMB-method for the vector of measures with matrix of interaction between components.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13324-019-00297-8</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3395-3030</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1664-2368
ispartof Analysis and mathematical physics, 2019-09, Vol.9 (3), p.919-935
issn 1664-2368
1664-235X
language eng
recordid cdi_proquest_journals_2300227925
source SpringerLink Journals - AutoHoldings
subjects Analysis
Inverse problems
Mathematical analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Matrix algebra
Matrix methods
title Direct and inverse problems for vector logarithmic potentials with external fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20and%20inverse%20problems%20for%20vector%20logarithmic%20potentials%20with%20external%20fields&rft.jtitle=Analysis%20and%20mathematical%20physics&rft.au=Aptekarev,%20A.%20I.&rft.date=2019-09-01&rft.volume=9&rft.issue=3&rft.spage=919&rft.epage=935&rft.pages=919-935&rft.issn=1664-2368&rft.eissn=1664-235X&rft_id=info:doi/10.1007/s13324-019-00297-8&rft_dat=%3Cproquest_cross%3E2300227925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300227925&rft_id=info:pmid/&rfr_iscdi=true