Several variants of the Dumont differential system and permutation statistics

The Dumont differential system on the Jacobi elliptic functions was introduced by Dumont (1979) and was extensively studied by Dumont, Viennot, Flajolet and so on. In this paper, we first present a labeling scheme for the cycle structure of permutations. We then introduce two types of Jacobi-pairs o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2019-10, Vol.62 (10), p.2033-2052
Hauptverfasser: Ma, Shi-Mei, Mansour, Toufik, Wang, David G. L., Yeh, Yeong-Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2052
container_issue 10
container_start_page 2033
container_title Science China. Mathematics
container_volume 62
creator Ma, Shi-Mei
Mansour, Toufik
Wang, David G. L.
Yeh, Yeong-Nan
description The Dumont differential system on the Jacobi elliptic functions was introduced by Dumont (1979) and was extensively studied by Dumont, Viennot, Flajolet and so on. In this paper, we first present a labeling scheme for the cycle structure of permutations. We then introduce two types of Jacobi-pairs of differential equations. We present a general method to derive the solutions of these differential equations. As applications, we present some characterizations for several permutation statistics.
doi_str_mv 10.1007/s11425-016-9240-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300227787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300227787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1ffa855c50d5f3cdb972105a2ea17a510f397faebfc58f49d3bc5b084c8063fe3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouKz7AbwFPEcnSdOkR1n_wooH9RzSNNEu23ZN0oX99qZU8OQc5s3hvTfwQ-iSwjUFkDeR0oIJArQkFSuAiBO0oKqsSF7sNN-lLIhkip-jVYxbyMMrKCRfoJc3d3DB7PDBhNb0KeLB4_Tl8N3YDX3CTeu9C65PbfbEY0yuw6Zv8N6FbkwmtUOP46QxtTZeoDNvdtGtfnWJPh7u39dPZPP6-Ly-3RDLaZkI9d4oIayARnhum7qSjIIwzBkqjaDgeSW9cbW3QvmianhtRQ2qsApK7h1foqu5dx-G79HFpLfDGPr8UjMOwJiUSmYXnV02DDEG5_U-tJ0JR01BT-D0DE5ncHoCp0XOsDkTs7f_dOGv-f_QD5zScVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300227787</pqid></control><display><type>article</type><title>Several variants of the Dumont differential system and permutation statistics</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ma, Shi-Mei ; Mansour, Toufik ; Wang, David G. L. ; Yeh, Yeong-Nan</creator><creatorcontrib>Ma, Shi-Mei ; Mansour, Toufik ; Wang, David G. L. ; Yeh, Yeong-Nan</creatorcontrib><description>The Dumont differential system on the Jacobi elliptic functions was introduced by Dumont (1979) and was extensively studied by Dumont, Viennot, Flajolet and so on. In this paper, we first present a labeling scheme for the cycle structure of permutations. We then introduce two types of Jacobi-pairs of differential equations. We present a general method to derive the solutions of these differential equations. As applications, we present some characterizations for several permutation statistics.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-016-9240-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Differential equations ; Elliptic functions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Permutations</subject><ispartof>Science China. Mathematics, 2019-10, Vol.62 (10), p.2033-2052</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1ffa855c50d5f3cdb972105a2ea17a510f397faebfc58f49d3bc5b084c8063fe3</citedby><cites>FETCH-LOGICAL-c316t-1ffa855c50d5f3cdb972105a2ea17a510f397faebfc58f49d3bc5b084c8063fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-016-9240-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-016-9240-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ma, Shi-Mei</creatorcontrib><creatorcontrib>Mansour, Toufik</creatorcontrib><creatorcontrib>Wang, David G. L.</creatorcontrib><creatorcontrib>Yeh, Yeong-Nan</creatorcontrib><title>Several variants of the Dumont differential system and permutation statistics</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>The Dumont differential system on the Jacobi elliptic functions was introduced by Dumont (1979) and was extensively studied by Dumont, Viennot, Flajolet and so on. In this paper, we first present a labeling scheme for the cycle structure of permutations. We then introduce two types of Jacobi-pairs of differential equations. We present a general method to derive the solutions of these differential equations. As applications, we present some characterizations for several permutation statistics.</description><subject>Applications of Mathematics</subject><subject>Differential equations</subject><subject>Elliptic functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Permutations</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouKz7AbwFPEcnSdOkR1n_wooH9RzSNNEu23ZN0oX99qZU8OQc5s3hvTfwQ-iSwjUFkDeR0oIJArQkFSuAiBO0oKqsSF7sNN-lLIhkip-jVYxbyMMrKCRfoJc3d3DB7PDBhNb0KeLB4_Tl8N3YDX3CTeu9C65PbfbEY0yuw6Zv8N6FbkwmtUOP46QxtTZeoDNvdtGtfnWJPh7u39dPZPP6-Ly-3RDLaZkI9d4oIayARnhum7qSjIIwzBkqjaDgeSW9cbW3QvmianhtRQ2qsApK7h1foqu5dx-G79HFpLfDGPr8UjMOwJiUSmYXnV02DDEG5_U-tJ0JR01BT-D0DE5ncHoCp0XOsDkTs7f_dOGv-f_QD5zScVg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Ma, Shi-Mei</creator><creator>Mansour, Toufik</creator><creator>Wang, David G. L.</creator><creator>Yeh, Yeong-Nan</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191001</creationdate><title>Several variants of the Dumont differential system and permutation statistics</title><author>Ma, Shi-Mei ; Mansour, Toufik ; Wang, David G. L. ; Yeh, Yeong-Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1ffa855c50d5f3cdb972105a2ea17a510f397faebfc58f49d3bc5b084c8063fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Differential equations</topic><topic>Elliptic functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Permutations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Shi-Mei</creatorcontrib><creatorcontrib>Mansour, Toufik</creatorcontrib><creatorcontrib>Wang, David G. L.</creatorcontrib><creatorcontrib>Yeh, Yeong-Nan</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Shi-Mei</au><au>Mansour, Toufik</au><au>Wang, David G. L.</au><au>Yeh, Yeong-Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Several variants of the Dumont differential system and permutation statistics</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>62</volume><issue>10</issue><spage>2033</spage><epage>2052</epage><pages>2033-2052</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>The Dumont differential system on the Jacobi elliptic functions was introduced by Dumont (1979) and was extensively studied by Dumont, Viennot, Flajolet and so on. In this paper, we first present a labeling scheme for the cycle structure of permutations. We then introduce two types of Jacobi-pairs of differential equations. We present a general method to derive the solutions of these differential equations. As applications, we present some characterizations for several permutation statistics.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-016-9240-5</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2019-10, Vol.62 (10), p.2033-2052
issn 1674-7283
1869-1862
language eng
recordid cdi_proquest_journals_2300227787
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Differential equations
Elliptic functions
Mathematical analysis
Mathematics
Mathematics and Statistics
Permutations
title Several variants of the Dumont differential system and permutation statistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A16%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Several%20variants%20of%20the%20Dumont%20differential%20system%20and%20permutation%20statistics&rft.jtitle=Science%20China.%20Mathematics&rft.au=Ma,%20Shi-Mei&rft.date=2019-10-01&rft.volume=62&rft.issue=10&rft.spage=2033&rft.epage=2052&rft.pages=2033-2052&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-016-9240-5&rft_dat=%3Cproquest_cross%3E2300227787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300227787&rft_id=info:pmid/&rfr_iscdi=true