Several variants of the Dumont differential system and permutation statistics
The Dumont differential system on the Jacobi elliptic functions was introduced by Dumont (1979) and was extensively studied by Dumont, Viennot, Flajolet and so on. In this paper, we first present a labeling scheme for the cycle structure of permutations. We then introduce two types of Jacobi-pairs o...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2019-10, Vol.62 (10), p.2033-2052 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2052 |
---|---|
container_issue | 10 |
container_start_page | 2033 |
container_title | Science China. Mathematics |
container_volume | 62 |
creator | Ma, Shi-Mei Mansour, Toufik Wang, David G. L. Yeh, Yeong-Nan |
description | The Dumont differential system on the Jacobi elliptic functions was introduced by Dumont (1979) and was extensively studied by Dumont, Viennot, Flajolet and so on. In this paper, we first present a labeling scheme for the cycle structure of permutations. We then introduce two types of Jacobi-pairs of differential equations. We present a general method to derive the solutions of these differential equations. As applications, we present some characterizations for several permutation statistics. |
doi_str_mv | 10.1007/s11425-016-9240-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300227787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300227787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1ffa855c50d5f3cdb972105a2ea17a510f397faebfc58f49d3bc5b084c8063fe3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouKz7AbwFPEcnSdOkR1n_wooH9RzSNNEu23ZN0oX99qZU8OQc5s3hvTfwQ-iSwjUFkDeR0oIJArQkFSuAiBO0oKqsSF7sNN-lLIhkip-jVYxbyMMrKCRfoJc3d3DB7PDBhNb0KeLB4_Tl8N3YDX3CTeu9C65PbfbEY0yuw6Zv8N6FbkwmtUOP46QxtTZeoDNvdtGtfnWJPh7u39dPZPP6-Ly-3RDLaZkI9d4oIayARnhum7qSjIIwzBkqjaDgeSW9cbW3QvmianhtRQ2qsApK7h1foqu5dx-G79HFpLfDGPr8UjMOwJiUSmYXnV02DDEG5_U-tJ0JR01BT-D0DE5ncHoCp0XOsDkTs7f_dOGv-f_QD5zScVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300227787</pqid></control><display><type>article</type><title>Several variants of the Dumont differential system and permutation statistics</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ma, Shi-Mei ; Mansour, Toufik ; Wang, David G. L. ; Yeh, Yeong-Nan</creator><creatorcontrib>Ma, Shi-Mei ; Mansour, Toufik ; Wang, David G. L. ; Yeh, Yeong-Nan</creatorcontrib><description>The Dumont differential system on the Jacobi elliptic functions was introduced by Dumont (1979) and was extensively studied by Dumont, Viennot, Flajolet and so on. In this paper, we first present a labeling scheme for the cycle structure of permutations. We then introduce two types of Jacobi-pairs of differential equations. We present a general method to derive the solutions of these differential equations. As applications, we present some characterizations for several permutation statistics.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-016-9240-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Differential equations ; Elliptic functions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Permutations</subject><ispartof>Science China. Mathematics, 2019-10, Vol.62 (10), p.2033-2052</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1ffa855c50d5f3cdb972105a2ea17a510f397faebfc58f49d3bc5b084c8063fe3</citedby><cites>FETCH-LOGICAL-c316t-1ffa855c50d5f3cdb972105a2ea17a510f397faebfc58f49d3bc5b084c8063fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-016-9240-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-016-9240-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ma, Shi-Mei</creatorcontrib><creatorcontrib>Mansour, Toufik</creatorcontrib><creatorcontrib>Wang, David G. L.</creatorcontrib><creatorcontrib>Yeh, Yeong-Nan</creatorcontrib><title>Several variants of the Dumont differential system and permutation statistics</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>The Dumont differential system on the Jacobi elliptic functions was introduced by Dumont (1979) and was extensively studied by Dumont, Viennot, Flajolet and so on. In this paper, we first present a labeling scheme for the cycle structure of permutations. We then introduce two types of Jacobi-pairs of differential equations. We present a general method to derive the solutions of these differential equations. As applications, we present some characterizations for several permutation statistics.</description><subject>Applications of Mathematics</subject><subject>Differential equations</subject><subject>Elliptic functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Permutations</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouKz7AbwFPEcnSdOkR1n_wooH9RzSNNEu23ZN0oX99qZU8OQc5s3hvTfwQ-iSwjUFkDeR0oIJArQkFSuAiBO0oKqsSF7sNN-lLIhkip-jVYxbyMMrKCRfoJc3d3DB7PDBhNb0KeLB4_Tl8N3YDX3CTeu9C65PbfbEY0yuw6Zv8N6FbkwmtUOP46QxtTZeoDNvdtGtfnWJPh7u39dPZPP6-Ly-3RDLaZkI9d4oIayARnhum7qSjIIwzBkqjaDgeSW9cbW3QvmianhtRQ2qsApK7h1foqu5dx-G79HFpLfDGPr8UjMOwJiUSmYXnV02DDEG5_U-tJ0JR01BT-D0DE5ncHoCp0XOsDkTs7f_dOGv-f_QD5zScVg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Ma, Shi-Mei</creator><creator>Mansour, Toufik</creator><creator>Wang, David G. L.</creator><creator>Yeh, Yeong-Nan</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191001</creationdate><title>Several variants of the Dumont differential system and permutation statistics</title><author>Ma, Shi-Mei ; Mansour, Toufik ; Wang, David G. L. ; Yeh, Yeong-Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1ffa855c50d5f3cdb972105a2ea17a510f397faebfc58f49d3bc5b084c8063fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Differential equations</topic><topic>Elliptic functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Permutations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Shi-Mei</creatorcontrib><creatorcontrib>Mansour, Toufik</creatorcontrib><creatorcontrib>Wang, David G. L.</creatorcontrib><creatorcontrib>Yeh, Yeong-Nan</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Shi-Mei</au><au>Mansour, Toufik</au><au>Wang, David G. L.</au><au>Yeh, Yeong-Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Several variants of the Dumont differential system and permutation statistics</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>62</volume><issue>10</issue><spage>2033</spage><epage>2052</epage><pages>2033-2052</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>The Dumont differential system on the Jacobi elliptic functions was introduced by Dumont (1979) and was extensively studied by Dumont, Viennot, Flajolet and so on. In this paper, we first present a labeling scheme for the cycle structure of permutations. We then introduce two types of Jacobi-pairs of differential equations. We present a general method to derive the solutions of these differential equations. As applications, we present some characterizations for several permutation statistics.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-016-9240-5</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2019-10, Vol.62 (10), p.2033-2052 |
issn | 1674-7283 1869-1862 |
language | eng |
recordid | cdi_proquest_journals_2300227787 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Differential equations Elliptic functions Mathematical analysis Mathematics Mathematics and Statistics Permutations |
title | Several variants of the Dumont differential system and permutation statistics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A16%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Several%20variants%20of%20the%20Dumont%20differential%20system%20and%20permutation%20statistics&rft.jtitle=Science%20China.%20Mathematics&rft.au=Ma,%20Shi-Mei&rft.date=2019-10-01&rft.volume=62&rft.issue=10&rft.spage=2033&rft.epage=2052&rft.pages=2033-2052&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-016-9240-5&rft_dat=%3Cproquest_cross%3E2300227787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300227787&rft_id=info:pmid/&rfr_iscdi=true |