Multi‐scale domain structure observation and piezoelectric responses for [001]‐oriented PMN‐33PT single crystal

Multiple phase coexistence contributes to the extraordinary piezoelectric behavior of (1‐x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN–xPT) near the morphotropic phase boundaries (MPBs). By incorporating an optical path of crossed polarized light (PLM) into the commercialized Piezoelectric Force Microscope (PFM)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2019-12, Vol.102 (12), p.7710-7719
Hauptverfasser: Fang, Kaiyue, Jing, Wenqi, Fang, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7719
container_issue 12
container_start_page 7710
container_title Journal of the American Ceramic Society
container_volume 102
creator Fang, Kaiyue
Jing, Wenqi
Fang, Fei
description Multiple phase coexistence contributes to the extraordinary piezoelectric behavior of (1‐x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN–xPT) near the morphotropic phase boundaries (MPBs). By incorporating an optical path of crossed polarized light (PLM) into the commercialized Piezoelectric Force Microscope (PFM) (named as PLM‐PFM system), in situ domain structure observation from micro‐ to nanoscale, as well as measurement of the piezoelectric behavior for individual domains can be realized. For [001]‐oriented single crystal of 67Pb(Mg1/3Nb2/3)O3‐33PbTiO3 (PMN‐33PT), fine domain boundary structures of rhombohedral (R), tetragonal (T), and monoclinic (M) phases are revealed. Measurements of the electric field‐induced displacement as a function of the applied DC electric field (VDC) are performed for domains with different polarization vectors. Values for the electric field‐induced displacement are in descending order for c‐domains of the M, R, and T phases. For an individual phase of T or M, the displacement increases when the angle between the polarization vector and the applied electric field decreases. The multi‐scale perspective of the domain structures and the corresponding piezoelectric response helps in understanding the ultra‐high piezoelectric performance for PMN‐PT single crystals near MPB. Multiscale domain structure observation and piezoelectric response for PMN‐PT ferroelectric single crystal.
doi_str_mv 10.1111/jace.16667
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300213523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300213523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3017-ca38e4ce9d10f448970b1c27401526a9e269041599ea1a4627e5af55a7d1d5de3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsbnyDgTpiak5nMZVmKV1rtoq5EhjRzRlKmk5pklLryEXxGn8TUce3ZHH74zn_gI-QU2AjCXKykwhGkaZrtkQEIAREvIN0nA8YYj7Kcs0Ny5NwqRCjyZEC6Wdd4_f355ZRskFZmLXVLnbed8p1FapYO7Zv02rRUthXdaPww2KDyVitq0W1M69DR2lj6FEqfQ5WxGluPFZ3P7kOM4_mCOt2-hH5lt87L5pgc1LJxePK3h-Tx6nIxuYmmD9e3k_E0UjGDLFIyzjFRWFTA6iTJi4wtQfEsYSB4KgvkacESEEWBEmSS8gyFrIWQWQWVqDAekrO-d2PNa4fOlyvT2Ta8LHkcjEAseByo855S1jhnsS43Vq-l3ZbAyp3Wcqe1_NUaYOjhd93g9h-yvBtPLvubH9qAfY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300213523</pqid></control><display><type>article</type><title>Multi‐scale domain structure observation and piezoelectric responses for [001]‐oriented PMN‐33PT single crystal</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Fang, Kaiyue ; Jing, Wenqi ; Fang, Fei</creator><creatorcontrib>Fang, Kaiyue ; Jing, Wenqi ; Fang, Fei</creatorcontrib><description>Multiple phase coexistence contributes to the extraordinary piezoelectric behavior of (1‐x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN–xPT) near the morphotropic phase boundaries (MPBs). By incorporating an optical path of crossed polarized light (PLM) into the commercialized Piezoelectric Force Microscope (PFM) (named as PLM‐PFM system), in situ domain structure observation from micro‐ to nanoscale, as well as measurement of the piezoelectric behavior for individual domains can be realized. For [001]‐oriented single crystal of 67Pb(Mg1/3Nb2/3)O3‐33PbTiO3 (PMN‐33PT), fine domain boundary structures of rhombohedral (R), tetragonal (T), and monoclinic (M) phases are revealed. Measurements of the electric field‐induced displacement as a function of the applied DC electric field (VDC) are performed for domains with different polarization vectors. Values for the electric field‐induced displacement are in descending order for c‐domains of the M, R, and T phases. For an individual phase of T or M, the displacement increases when the angle between the polarization vector and the applied electric field decreases. The multi‐scale perspective of the domain structures and the corresponding piezoelectric response helps in understanding the ultra‐high piezoelectric performance for PMN‐PT single crystals near MPB. Multiscale domain structure observation and piezoelectric response for PMN‐PT ferroelectric single crystal.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.16667</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Commercialization ; Crystal structure ; Displacement ; Domains ; Electric fields ; electromechanical properties ; ferroelectricity/ferroelectric materials ; lead magnesium niobates ; microstructure ; morphotropic phase boundary ; Piezoelectricity ; Polarization ; Polarized light ; Single crystals</subject><ispartof>Journal of the American Ceramic Society, 2019-12, Vol.102 (12), p.7710-7719</ispartof><rights>2019 The American Ceramic Society</rights><rights>2019 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3017-ca38e4ce9d10f448970b1c27401526a9e269041599ea1a4627e5af55a7d1d5de3</citedby><cites>FETCH-LOGICAL-c3017-ca38e4ce9d10f448970b1c27401526a9e269041599ea1a4627e5af55a7d1d5de3</cites><orcidid>0000-0002-8284-2548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.16667$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.16667$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Fang, Kaiyue</creatorcontrib><creatorcontrib>Jing, Wenqi</creatorcontrib><creatorcontrib>Fang, Fei</creatorcontrib><title>Multi‐scale domain structure observation and piezoelectric responses for [001]‐oriented PMN‐33PT single crystal</title><title>Journal of the American Ceramic Society</title><description>Multiple phase coexistence contributes to the extraordinary piezoelectric behavior of (1‐x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN–xPT) near the morphotropic phase boundaries (MPBs). By incorporating an optical path of crossed polarized light (PLM) into the commercialized Piezoelectric Force Microscope (PFM) (named as PLM‐PFM system), in situ domain structure observation from micro‐ to nanoscale, as well as measurement of the piezoelectric behavior for individual domains can be realized. For [001]‐oriented single crystal of 67Pb(Mg1/3Nb2/3)O3‐33PbTiO3 (PMN‐33PT), fine domain boundary structures of rhombohedral (R), tetragonal (T), and monoclinic (M) phases are revealed. Measurements of the electric field‐induced displacement as a function of the applied DC electric field (VDC) are performed for domains with different polarization vectors. Values for the electric field‐induced displacement are in descending order for c‐domains of the M, R, and T phases. For an individual phase of T or M, the displacement increases when the angle between the polarization vector and the applied electric field decreases. The multi‐scale perspective of the domain structures and the corresponding piezoelectric response helps in understanding the ultra‐high piezoelectric performance for PMN‐PT single crystals near MPB. Multiscale domain structure observation and piezoelectric response for PMN‐PT ferroelectric single crystal.</description><subject>Commercialization</subject><subject>Crystal structure</subject><subject>Displacement</subject><subject>Domains</subject><subject>Electric fields</subject><subject>electromechanical properties</subject><subject>ferroelectricity/ferroelectric materials</subject><subject>lead magnesium niobates</subject><subject>microstructure</subject><subject>morphotropic phase boundary</subject><subject>Piezoelectricity</subject><subject>Polarization</subject><subject>Polarized light</subject><subject>Single crystals</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsbnyDgTpiak5nMZVmKV1rtoq5EhjRzRlKmk5pklLryEXxGn8TUce3ZHH74zn_gI-QU2AjCXKykwhGkaZrtkQEIAREvIN0nA8YYj7Kcs0Ny5NwqRCjyZEC6Wdd4_f355ZRskFZmLXVLnbed8p1FapYO7Zv02rRUthXdaPww2KDyVitq0W1M69DR2lj6FEqfQ5WxGluPFZ3P7kOM4_mCOt2-hH5lt87L5pgc1LJxePK3h-Tx6nIxuYmmD9e3k_E0UjGDLFIyzjFRWFTA6iTJi4wtQfEsYSB4KgvkacESEEWBEmSS8gyFrIWQWQWVqDAekrO-d2PNa4fOlyvT2Ta8LHkcjEAseByo855S1jhnsS43Vq-l3ZbAyp3Wcqe1_NUaYOjhd93g9h-yvBtPLvubH9qAfY0</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Fang, Kaiyue</creator><creator>Jing, Wenqi</creator><creator>Fang, Fei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8284-2548</orcidid></search><sort><creationdate>201912</creationdate><title>Multi‐scale domain structure observation and piezoelectric responses for [001]‐oriented PMN‐33PT single crystal</title><author>Fang, Kaiyue ; Jing, Wenqi ; Fang, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3017-ca38e4ce9d10f448970b1c27401526a9e269041599ea1a4627e5af55a7d1d5de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Commercialization</topic><topic>Crystal structure</topic><topic>Displacement</topic><topic>Domains</topic><topic>Electric fields</topic><topic>electromechanical properties</topic><topic>ferroelectricity/ferroelectric materials</topic><topic>lead magnesium niobates</topic><topic>microstructure</topic><topic>morphotropic phase boundary</topic><topic>Piezoelectricity</topic><topic>Polarization</topic><topic>Polarized light</topic><topic>Single crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Kaiyue</creatorcontrib><creatorcontrib>Jing, Wenqi</creatorcontrib><creatorcontrib>Fang, Fei</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Kaiyue</au><au>Jing, Wenqi</au><au>Fang, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐scale domain structure observation and piezoelectric responses for [001]‐oriented PMN‐33PT single crystal</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2019-12</date><risdate>2019</risdate><volume>102</volume><issue>12</issue><spage>7710</spage><epage>7719</epage><pages>7710-7719</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Multiple phase coexistence contributes to the extraordinary piezoelectric behavior of (1‐x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN–xPT) near the morphotropic phase boundaries (MPBs). By incorporating an optical path of crossed polarized light (PLM) into the commercialized Piezoelectric Force Microscope (PFM) (named as PLM‐PFM system), in situ domain structure observation from micro‐ to nanoscale, as well as measurement of the piezoelectric behavior for individual domains can be realized. For [001]‐oriented single crystal of 67Pb(Mg1/3Nb2/3)O3‐33PbTiO3 (PMN‐33PT), fine domain boundary structures of rhombohedral (R), tetragonal (T), and monoclinic (M) phases are revealed. Measurements of the electric field‐induced displacement as a function of the applied DC electric field (VDC) are performed for domains with different polarization vectors. Values for the electric field‐induced displacement are in descending order for c‐domains of the M, R, and T phases. For an individual phase of T or M, the displacement increases when the angle between the polarization vector and the applied electric field decreases. The multi‐scale perspective of the domain structures and the corresponding piezoelectric response helps in understanding the ultra‐high piezoelectric performance for PMN‐PT single crystals near MPB. Multiscale domain structure observation and piezoelectric response for PMN‐PT ferroelectric single crystal.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.16667</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8284-2548</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2019-12, Vol.102 (12), p.7710-7719
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2300213523
source Wiley Online Library - AutoHoldings Journals
subjects Commercialization
Crystal structure
Displacement
Domains
Electric fields
electromechanical properties
ferroelectricity/ferroelectric materials
lead magnesium niobates
microstructure
morphotropic phase boundary
Piezoelectricity
Polarization
Polarized light
Single crystals
title Multi‐scale domain structure observation and piezoelectric responses for [001]‐oriented PMN‐33PT single crystal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A25%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90scale%20domain%20structure%20observation%20and%20piezoelectric%20responses%20for%20%5B001%5D%E2%80%90oriented%20PMN%E2%80%9033PT%20single%20crystal&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Fang,%20Kaiyue&rft.date=2019-12&rft.volume=102&rft.issue=12&rft.spage=7710&rft.epage=7719&rft.pages=7710-7719&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.16667&rft_dat=%3Cproquest_cross%3E2300213523%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300213523&rft_id=info:pmid/&rfr_iscdi=true