Multi‐scale domain structure observation and piezoelectric responses for [001]‐oriented PMN‐33PT single crystal
Multiple phase coexistence contributes to the extraordinary piezoelectric behavior of (1‐x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN–xPT) near the morphotropic phase boundaries (MPBs). By incorporating an optical path of crossed polarized light (PLM) into the commercialized Piezoelectric Force Microscope (PFM)...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2019-12, Vol.102 (12), p.7710-7719 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7719 |
---|---|
container_issue | 12 |
container_start_page | 7710 |
container_title | Journal of the American Ceramic Society |
container_volume | 102 |
creator | Fang, Kaiyue Jing, Wenqi Fang, Fei |
description | Multiple phase coexistence contributes to the extraordinary piezoelectric behavior of (1‐x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN–xPT) near the morphotropic phase boundaries (MPBs). By incorporating an optical path of crossed polarized light (PLM) into the commercialized Piezoelectric Force Microscope (PFM) (named as PLM‐PFM system), in situ domain structure observation from micro‐ to nanoscale, as well as measurement of the piezoelectric behavior for individual domains can be realized. For [001]‐oriented single crystal of 67Pb(Mg1/3Nb2/3)O3‐33PbTiO3 (PMN‐33PT), fine domain boundary structures of rhombohedral (R), tetragonal (T), and monoclinic (M) phases are revealed. Measurements of the electric field‐induced displacement as a function of the applied DC electric field (VDC) are performed for domains with different polarization vectors. Values for the electric field‐induced displacement are in descending order for c‐domains of the M, R, and T phases. For an individual phase of T or M, the displacement increases when the angle between the polarization vector and the applied electric field decreases. The multi‐scale perspective of the domain structures and the corresponding piezoelectric response helps in understanding the ultra‐high piezoelectric performance for PMN‐PT single crystals near MPB.
Multiscale domain structure observation and piezoelectric response for PMN‐PT ferroelectric single crystal. |
doi_str_mv | 10.1111/jace.16667 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2300213523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300213523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3017-ca38e4ce9d10f448970b1c27401526a9e269041599ea1a4627e5af55a7d1d5de3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsbnyDgTpiak5nMZVmKV1rtoq5EhjRzRlKmk5pklLryEXxGn8TUce3ZHH74zn_gI-QU2AjCXKykwhGkaZrtkQEIAREvIN0nA8YYj7Kcs0Ny5NwqRCjyZEC6Wdd4_f355ZRskFZmLXVLnbed8p1FapYO7Zv02rRUthXdaPww2KDyVitq0W1M69DR2lj6FEqfQ5WxGluPFZ3P7kOM4_mCOt2-hH5lt87L5pgc1LJxePK3h-Tx6nIxuYmmD9e3k_E0UjGDLFIyzjFRWFTA6iTJi4wtQfEsYSB4KgvkacESEEWBEmSS8gyFrIWQWQWVqDAekrO-d2PNa4fOlyvT2Ta8LHkcjEAseByo855S1jhnsS43Vq-l3ZbAyp3Wcqe1_NUaYOjhd93g9h-yvBtPLvubH9qAfY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300213523</pqid></control><display><type>article</type><title>Multi‐scale domain structure observation and piezoelectric responses for [001]‐oriented PMN‐33PT single crystal</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Fang, Kaiyue ; Jing, Wenqi ; Fang, Fei</creator><creatorcontrib>Fang, Kaiyue ; Jing, Wenqi ; Fang, Fei</creatorcontrib><description>Multiple phase coexistence contributes to the extraordinary piezoelectric behavior of (1‐x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN–xPT) near the morphotropic phase boundaries (MPBs). By incorporating an optical path of crossed polarized light (PLM) into the commercialized Piezoelectric Force Microscope (PFM) (named as PLM‐PFM system), in situ domain structure observation from micro‐ to nanoscale, as well as measurement of the piezoelectric behavior for individual domains can be realized. For [001]‐oriented single crystal of 67Pb(Mg1/3Nb2/3)O3‐33PbTiO3 (PMN‐33PT), fine domain boundary structures of rhombohedral (R), tetragonal (T), and monoclinic (M) phases are revealed. Measurements of the electric field‐induced displacement as a function of the applied DC electric field (VDC) are performed for domains with different polarization vectors. Values for the electric field‐induced displacement are in descending order for c‐domains of the M, R, and T phases. For an individual phase of T or M, the displacement increases when the angle between the polarization vector and the applied electric field decreases. The multi‐scale perspective of the domain structures and the corresponding piezoelectric response helps in understanding the ultra‐high piezoelectric performance for PMN‐PT single crystals near MPB.
Multiscale domain structure observation and piezoelectric response for PMN‐PT ferroelectric single crystal.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.16667</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Commercialization ; Crystal structure ; Displacement ; Domains ; Electric fields ; electromechanical properties ; ferroelectricity/ferroelectric materials ; lead magnesium niobates ; microstructure ; morphotropic phase boundary ; Piezoelectricity ; Polarization ; Polarized light ; Single crystals</subject><ispartof>Journal of the American Ceramic Society, 2019-12, Vol.102 (12), p.7710-7719</ispartof><rights>2019 The American Ceramic Society</rights><rights>2019 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3017-ca38e4ce9d10f448970b1c27401526a9e269041599ea1a4627e5af55a7d1d5de3</citedby><cites>FETCH-LOGICAL-c3017-ca38e4ce9d10f448970b1c27401526a9e269041599ea1a4627e5af55a7d1d5de3</cites><orcidid>0000-0002-8284-2548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.16667$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.16667$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Fang, Kaiyue</creatorcontrib><creatorcontrib>Jing, Wenqi</creatorcontrib><creatorcontrib>Fang, Fei</creatorcontrib><title>Multi‐scale domain structure observation and piezoelectric responses for [001]‐oriented PMN‐33PT single crystal</title><title>Journal of the American Ceramic Society</title><description>Multiple phase coexistence contributes to the extraordinary piezoelectric behavior of (1‐x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN–xPT) near the morphotropic phase boundaries (MPBs). By incorporating an optical path of crossed polarized light (PLM) into the commercialized Piezoelectric Force Microscope (PFM) (named as PLM‐PFM system), in situ domain structure observation from micro‐ to nanoscale, as well as measurement of the piezoelectric behavior for individual domains can be realized. For [001]‐oriented single crystal of 67Pb(Mg1/3Nb2/3)O3‐33PbTiO3 (PMN‐33PT), fine domain boundary structures of rhombohedral (R), tetragonal (T), and monoclinic (M) phases are revealed. Measurements of the electric field‐induced displacement as a function of the applied DC electric field (VDC) are performed for domains with different polarization vectors. Values for the electric field‐induced displacement are in descending order for c‐domains of the M, R, and T phases. For an individual phase of T or M, the displacement increases when the angle between the polarization vector and the applied electric field decreases. The multi‐scale perspective of the domain structures and the corresponding piezoelectric response helps in understanding the ultra‐high piezoelectric performance for PMN‐PT single crystals near MPB.
Multiscale domain structure observation and piezoelectric response for PMN‐PT ferroelectric single crystal.</description><subject>Commercialization</subject><subject>Crystal structure</subject><subject>Displacement</subject><subject>Domains</subject><subject>Electric fields</subject><subject>electromechanical properties</subject><subject>ferroelectricity/ferroelectric materials</subject><subject>lead magnesium niobates</subject><subject>microstructure</subject><subject>morphotropic phase boundary</subject><subject>Piezoelectricity</subject><subject>Polarization</subject><subject>Polarized light</subject><subject>Single crystals</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsbnyDgTpiak5nMZVmKV1rtoq5EhjRzRlKmk5pklLryEXxGn8TUce3ZHH74zn_gI-QU2AjCXKykwhGkaZrtkQEIAREvIN0nA8YYj7Kcs0Ny5NwqRCjyZEC6Wdd4_f355ZRskFZmLXVLnbed8p1FapYO7Zv02rRUthXdaPww2KDyVitq0W1M69DR2lj6FEqfQ5WxGluPFZ3P7kOM4_mCOt2-hH5lt87L5pgc1LJxePK3h-Tx6nIxuYmmD9e3k_E0UjGDLFIyzjFRWFTA6iTJi4wtQfEsYSB4KgvkacESEEWBEmSS8gyFrIWQWQWVqDAekrO-d2PNa4fOlyvT2Ta8LHkcjEAseByo855S1jhnsS43Vq-l3ZbAyp3Wcqe1_NUaYOjhd93g9h-yvBtPLvubH9qAfY0</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Fang, Kaiyue</creator><creator>Jing, Wenqi</creator><creator>Fang, Fei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8284-2548</orcidid></search><sort><creationdate>201912</creationdate><title>Multi‐scale domain structure observation and piezoelectric responses for [001]‐oriented PMN‐33PT single crystal</title><author>Fang, Kaiyue ; Jing, Wenqi ; Fang, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3017-ca38e4ce9d10f448970b1c27401526a9e269041599ea1a4627e5af55a7d1d5de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Commercialization</topic><topic>Crystal structure</topic><topic>Displacement</topic><topic>Domains</topic><topic>Electric fields</topic><topic>electromechanical properties</topic><topic>ferroelectricity/ferroelectric materials</topic><topic>lead magnesium niobates</topic><topic>microstructure</topic><topic>morphotropic phase boundary</topic><topic>Piezoelectricity</topic><topic>Polarization</topic><topic>Polarized light</topic><topic>Single crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Kaiyue</creatorcontrib><creatorcontrib>Jing, Wenqi</creatorcontrib><creatorcontrib>Fang, Fei</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Kaiyue</au><au>Jing, Wenqi</au><au>Fang, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐scale domain structure observation and piezoelectric responses for [001]‐oriented PMN‐33PT single crystal</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2019-12</date><risdate>2019</risdate><volume>102</volume><issue>12</issue><spage>7710</spage><epage>7719</epage><pages>7710-7719</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Multiple phase coexistence contributes to the extraordinary piezoelectric behavior of (1‐x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN–xPT) near the morphotropic phase boundaries (MPBs). By incorporating an optical path of crossed polarized light (PLM) into the commercialized Piezoelectric Force Microscope (PFM) (named as PLM‐PFM system), in situ domain structure observation from micro‐ to nanoscale, as well as measurement of the piezoelectric behavior for individual domains can be realized. For [001]‐oriented single crystal of 67Pb(Mg1/3Nb2/3)O3‐33PbTiO3 (PMN‐33PT), fine domain boundary structures of rhombohedral (R), tetragonal (T), and monoclinic (M) phases are revealed. Measurements of the electric field‐induced displacement as a function of the applied DC electric field (VDC) are performed for domains with different polarization vectors. Values for the electric field‐induced displacement are in descending order for c‐domains of the M, R, and T phases. For an individual phase of T or M, the displacement increases when the angle between the polarization vector and the applied electric field decreases. The multi‐scale perspective of the domain structures and the corresponding piezoelectric response helps in understanding the ultra‐high piezoelectric performance for PMN‐PT single crystals near MPB.
Multiscale domain structure observation and piezoelectric response for PMN‐PT ferroelectric single crystal.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.16667</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8284-2548</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2019-12, Vol.102 (12), p.7710-7719 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2300213523 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Commercialization Crystal structure Displacement Domains Electric fields electromechanical properties ferroelectricity/ferroelectric materials lead magnesium niobates microstructure morphotropic phase boundary Piezoelectricity Polarization Polarized light Single crystals |
title | Multi‐scale domain structure observation and piezoelectric responses for [001]‐oriented PMN‐33PT single crystal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A25%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90scale%20domain%20structure%20observation%20and%20piezoelectric%20responses%20for%20%5B001%5D%E2%80%90oriented%20PMN%E2%80%9033PT%20single%20crystal&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Fang,%20Kaiyue&rft.date=2019-12&rft.volume=102&rft.issue=12&rft.spage=7710&rft.epage=7719&rft.pages=7710-7719&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.16667&rft_dat=%3Cproquest_cross%3E2300213523%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300213523&rft_id=info:pmid/&rfr_iscdi=true |