Quantitative analysis of fat content in rice by near-infrared spectroscopy technique
Fat content in rice is one of the most important nutritional quality properties. But the chemical analysis of fat content is time-consuming and costly and could result in poor reproduction between replicates. Near-infrared spectroscopy (NIRS) can solve those problems by providing a rapid, nondestruc...
Gespeichert in:
Veröffentlicht in: | Cereal chemistry 2006-07, Vol.83 (4), p.402-406 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 406 |
---|---|
container_issue | 4 |
container_start_page | 402 |
container_title | Cereal chemistry |
container_volume | 83 |
creator | Wang, H.L Wan, X.Y Bi, J.C Wang, J.K Jiang, L Chen, L.M Zhai, H.Q Wan, J.M |
description | Fat content in rice is one of the most important nutritional quality properties. But the chemical analysis of fat content is time-consuming and costly and could result in poor reproduction between replicates. Near-infrared spectroscopy (NIRS) can solve those problems by providing a rapid, nondestructive, and quantitative analysis. Based on the NIRS technique and partial least squares (PLS) algorithm, four calibration models were established to quantitatively analyze fat content in brown rice grain and flour and milled rice grain and flour with 248 representative samples. The determination coefficients (R2) of these calibration models were 0.79, 0.84, 0.89, and 0.91, respectively, with the corresponding root mean square errors 0.16, 0.14, 0.09, and 0.08%. The R2 were 0.73, 0.81, 0.81, and 0.89 with the corresponding root mean square errors 0.17, 0.15, 0.12, and 0.09%, respectively, in cross validation. The R2 were 0.62, 0.80, 0.81, and 0.87, respectively, with the root mean square errors 0.25, 0.31, 0.28, and 0.30% in external validation. These results indicate that the method of NIRS has relatively high accuracy in the prediction of rice fat content. The four calibration models established in the present study should be useful for nutrient quality improvement in rice breeding. |
doi_str_mv | 10.1094/CC-83-0402 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_230011926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1088897211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3532-ad1b78536f419769fe90a7f81a1ef173dace64791a5ff095ba0f73dee8eec8123</originalsourceid><addsrcrecordid>eNp9kEtLJDEURoOMYI_jxj9gENwINXOT1CtLKVodEERs1-F2-kYjbapN0kr9eyPdMLtZ5cH5zn0wdirgtwBd_xmGqlcV1CAP2EzoWlWqVf0PNgMAXYFq5BH7mdJreSrRqRlbPGwxZJ8x-w_iGHA9JZ_46LjDzO0YMoXMfeDRW-LLiQfCWPngIkZa8bQhm-OY7LiZeCb7Evz7ln6xQ4frRCf785g9Xc8Xw211d3_zd7i6q6xqlKxwJZZd36jW1UJ3rXakATvXCxTkSncrtNTWnRbYOAe6WSK48kvUE9leSHXMznfeTRxL2ZTN67iNZYZkpAIQQsu2QJc7yJY-UyRnNtG_YZyMAPO9NDMMplfme2kFvtgbMVlclymD9elfotNNB7IpHOy4T7-m6T_Gcr2d79Vnu4jD0eBzLNqnRwlCQYl0jRTqC4Vsg-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230011926</pqid></control><display><type>article</type><title>Quantitative analysis of fat content in rice by near-infrared spectroscopy technique</title><source>Wiley Online Library All Journals</source><creator>Wang, H.L ; Wan, X.Y ; Bi, J.C ; Wang, J.K ; Jiang, L ; Chen, L.M ; Zhai, H.Q ; Wan, J.M</creator><creatorcontrib>Wang, H.L ; Wan, X.Y ; Bi, J.C ; Wang, J.K ; Jiang, L ; Chen, L.M ; Zhai, H.Q ; Wan, J.M</creatorcontrib><description>Fat content in rice is one of the most important nutritional quality properties. But the chemical analysis of fat content is time-consuming and costly and could result in poor reproduction between replicates. Near-infrared spectroscopy (NIRS) can solve those problems by providing a rapid, nondestructive, and quantitative analysis. Based on the NIRS technique and partial least squares (PLS) algorithm, four calibration models were established to quantitatively analyze fat content in brown rice grain and flour and milled rice grain and flour with 248 representative samples. The determination coefficients (R2) of these calibration models were 0.79, 0.84, 0.89, and 0.91, respectively, with the corresponding root mean square errors 0.16, 0.14, 0.09, and 0.08%. The R2 were 0.73, 0.81, 0.81, and 0.89 with the corresponding root mean square errors 0.17, 0.15, 0.12, and 0.09%, respectively, in cross validation. The R2 were 0.62, 0.80, 0.81, and 0.87, respectively, with the root mean square errors 0.25, 0.31, 0.28, and 0.30% in external validation. These results indicate that the method of NIRS has relatively high accuracy in the prediction of rice fat content. The four calibration models established in the present study should be useful for nutrient quality improvement in rice breeding.</description><identifier>ISSN: 0009-0352</identifier><identifier>EISSN: 1943-3638</identifier><identifier>DOI: 10.1094/CC-83-0402</identifier><identifier>CODEN: CECHAF</identifier><language>eng</language><publisher>St. Paul, MN: The American Association of Cereal Chemists, Inc</publisher><subject>accuracy ; Biological and medical sciences ; calibration ; Cereal and baking product industries ; equations ; Food industries ; food quality ; Fundamental and applied biological sciences. Psychology ; Infrared spectroscopy ; lipid content ; near-infrared spectroscopy ; nondestructive methods ; quantitative analysis ; rapid methods ; rice ; rice flour</subject><ispartof>Cereal chemistry, 2006-07, Vol.83 (4), p.402-406</ispartof><rights>AACC International</rights><rights>2006 INIST-CNRS</rights><rights>Copyright American Association of Cereal Chemists Jul/Aug 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3532-ad1b78536f419769fe90a7f81a1ef173dace64791a5ff095ba0f73dee8eec8123</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1094%2FCC-83-0402$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1094%2FCC-83-0402$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17957025$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, H.L</creatorcontrib><creatorcontrib>Wan, X.Y</creatorcontrib><creatorcontrib>Bi, J.C</creatorcontrib><creatorcontrib>Wang, J.K</creatorcontrib><creatorcontrib>Jiang, L</creatorcontrib><creatorcontrib>Chen, L.M</creatorcontrib><creatorcontrib>Zhai, H.Q</creatorcontrib><creatorcontrib>Wan, J.M</creatorcontrib><title>Quantitative analysis of fat content in rice by near-infrared spectroscopy technique</title><title>Cereal chemistry</title><description>Fat content in rice is one of the most important nutritional quality properties. But the chemical analysis of fat content is time-consuming and costly and could result in poor reproduction between replicates. Near-infrared spectroscopy (NIRS) can solve those problems by providing a rapid, nondestructive, and quantitative analysis. Based on the NIRS technique and partial least squares (PLS) algorithm, four calibration models were established to quantitatively analyze fat content in brown rice grain and flour and milled rice grain and flour with 248 representative samples. The determination coefficients (R2) of these calibration models were 0.79, 0.84, 0.89, and 0.91, respectively, with the corresponding root mean square errors 0.16, 0.14, 0.09, and 0.08%. The R2 were 0.73, 0.81, 0.81, and 0.89 with the corresponding root mean square errors 0.17, 0.15, 0.12, and 0.09%, respectively, in cross validation. The R2 were 0.62, 0.80, 0.81, and 0.87, respectively, with the root mean square errors 0.25, 0.31, 0.28, and 0.30% in external validation. These results indicate that the method of NIRS has relatively high accuracy in the prediction of rice fat content. The four calibration models established in the present study should be useful for nutrient quality improvement in rice breeding.</description><subject>accuracy</subject><subject>Biological and medical sciences</subject><subject>calibration</subject><subject>Cereal and baking product industries</subject><subject>equations</subject><subject>Food industries</subject><subject>food quality</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Infrared spectroscopy</subject><subject>lipid content</subject><subject>near-infrared spectroscopy</subject><subject>nondestructive methods</subject><subject>quantitative analysis</subject><subject>rapid methods</subject><subject>rice</subject><subject>rice flour</subject><issn>0009-0352</issn><issn>1943-3638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLJDEURoOMYI_jxj9gENwINXOT1CtLKVodEERs1-F2-kYjbapN0kr9eyPdMLtZ5cH5zn0wdirgtwBd_xmGqlcV1CAP2EzoWlWqVf0PNgMAXYFq5BH7mdJreSrRqRlbPGwxZJ8x-w_iGHA9JZ_46LjDzO0YMoXMfeDRW-LLiQfCWPngIkZa8bQhm-OY7LiZeCb7Evz7ln6xQ4frRCf785g9Xc8Xw211d3_zd7i6q6xqlKxwJZZd36jW1UJ3rXakATvXCxTkSncrtNTWnRbYOAe6WSK48kvUE9leSHXMznfeTRxL2ZTN67iNZYZkpAIQQsu2QJc7yJY-UyRnNtG_YZyMAPO9NDMMplfme2kFvtgbMVlclymD9elfotNNB7IpHOy4T7-m6T_Gcr2d79Vnu4jD0eBzLNqnRwlCQYl0jRTqC4Vsg-E</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Wang, H.L</creator><creator>Wan, X.Y</creator><creator>Bi, J.C</creator><creator>Wang, J.K</creator><creator>Jiang, L</creator><creator>Chen, L.M</creator><creator>Zhai, H.Q</creator><creator>Wan, J.M</creator><general>The American Association of Cereal Chemists, Inc</general><general>American Association of Cereal Chemists</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200607</creationdate><title>Quantitative analysis of fat content in rice by near-infrared spectroscopy technique</title><author>Wang, H.L ; Wan, X.Y ; Bi, J.C ; Wang, J.K ; Jiang, L ; Chen, L.M ; Zhai, H.Q ; Wan, J.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3532-ad1b78536f419769fe90a7f81a1ef173dace64791a5ff095ba0f73dee8eec8123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>accuracy</topic><topic>Biological and medical sciences</topic><topic>calibration</topic><topic>Cereal and baking product industries</topic><topic>equations</topic><topic>Food industries</topic><topic>food quality</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Infrared spectroscopy</topic><topic>lipid content</topic><topic>near-infrared spectroscopy</topic><topic>nondestructive methods</topic><topic>quantitative analysis</topic><topic>rapid methods</topic><topic>rice</topic><topic>rice flour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, H.L</creatorcontrib><creatorcontrib>Wan, X.Y</creatorcontrib><creatorcontrib>Bi, J.C</creatorcontrib><creatorcontrib>Wang, J.K</creatorcontrib><creatorcontrib>Jiang, L</creatorcontrib><creatorcontrib>Chen, L.M</creatorcontrib><creatorcontrib>Zhai, H.Q</creatorcontrib><creatorcontrib>Wan, J.M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Cereal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, H.L</au><au>Wan, X.Y</au><au>Bi, J.C</au><au>Wang, J.K</au><au>Jiang, L</au><au>Chen, L.M</au><au>Zhai, H.Q</au><au>Wan, J.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative analysis of fat content in rice by near-infrared spectroscopy technique</atitle><jtitle>Cereal chemistry</jtitle><date>2006-07</date><risdate>2006</risdate><volume>83</volume><issue>4</issue><spage>402</spage><epage>406</epage><pages>402-406</pages><issn>0009-0352</issn><eissn>1943-3638</eissn><coden>CECHAF</coden><abstract>Fat content in rice is one of the most important nutritional quality properties. But the chemical analysis of fat content is time-consuming and costly and could result in poor reproduction between replicates. Near-infrared spectroscopy (NIRS) can solve those problems by providing a rapid, nondestructive, and quantitative analysis. Based on the NIRS technique and partial least squares (PLS) algorithm, four calibration models were established to quantitatively analyze fat content in brown rice grain and flour and milled rice grain and flour with 248 representative samples. The determination coefficients (R2) of these calibration models were 0.79, 0.84, 0.89, and 0.91, respectively, with the corresponding root mean square errors 0.16, 0.14, 0.09, and 0.08%. The R2 were 0.73, 0.81, 0.81, and 0.89 with the corresponding root mean square errors 0.17, 0.15, 0.12, and 0.09%, respectively, in cross validation. The R2 were 0.62, 0.80, 0.81, and 0.87, respectively, with the root mean square errors 0.25, 0.31, 0.28, and 0.30% in external validation. These results indicate that the method of NIRS has relatively high accuracy in the prediction of rice fat content. The four calibration models established in the present study should be useful for nutrient quality improvement in rice breeding.</abstract><cop>St. Paul, MN</cop><pub>The American Association of Cereal Chemists, Inc</pub><doi>10.1094/CC-83-0402</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-0352 |
ispartof | Cereal chemistry, 2006-07, Vol.83 (4), p.402-406 |
issn | 0009-0352 1943-3638 |
language | eng |
recordid | cdi_proquest_journals_230011926 |
source | Wiley Online Library All Journals |
subjects | accuracy Biological and medical sciences calibration Cereal and baking product industries equations Food industries food quality Fundamental and applied biological sciences. Psychology Infrared spectroscopy lipid content near-infrared spectroscopy nondestructive methods quantitative analysis rapid methods rice rice flour |
title | Quantitative analysis of fat content in rice by near-infrared spectroscopy technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20analysis%20of%20fat%20content%20in%20rice%20by%20near-infrared%20spectroscopy%20technique&rft.jtitle=Cereal%20chemistry&rft.au=Wang,%20H.L&rft.date=2006-07&rft.volume=83&rft.issue=4&rft.spage=402&rft.epage=406&rft.pages=402-406&rft.issn=0009-0352&rft.eissn=1943-3638&rft.coden=CECHAF&rft_id=info:doi/10.1094/CC-83-0402&rft_dat=%3Cproquest_cross%3E1088897211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230011926&rft_id=info:pmid/&rfr_iscdi=true |