An Efficient Parallel Triangle Enumeration on the MapReduce Framework

A triangle enumerating problem is one of fundamental problems of graph data. Although several triangle enumerating algorithms based on MapReduce have been proposed, they still suffer from generating a lot of intermediate data. In this paper, we propose the efficient MapReduce algorithms to enumerate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2019/10/01, Vol.E102.D(10), pp.1902-1915
Hauptverfasser: KIM, Hongyeon, MIN, Jun-Ki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1915
container_issue 10
container_start_page 1902
container_title IEICE Transactions on Information and Systems
container_volume E102.D
creator KIM, Hongyeon
MIN, Jun-Ki
description A triangle enumerating problem is one of fundamental problems of graph data. Although several triangle enumerating algorithms based on MapReduce have been proposed, they still suffer from generating a lot of intermediate data. In this paper, we propose the efficient MapReduce algorithms to enumerate every triangle in the massive graph based on a vertex partition. Since a triangle is composed of an edge and a wedge, our algorithms check the existence of an edge connecting the end-nodes of each wedge. To generate every triangle from a graph in parallel, we first split a graph into several vertex partitions and group the edges and wedges in the graph for each pair of vertex partitions. Then, we form the triangles appearing in each group. Furthermore, to enhance the performance of our algorithm, we remove the duplicated wedges existing in several groups. Our experimental evaluation shows the performance of our proposed algorithm is better than that of the state-of-the-art algorithm in diverse environments.
doi_str_mv 10.1587/transinf.2018EDP7421
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2299824644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299824644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-48f92c4ccefb6eb37d8ffddcb751570cdca0ded7dbd031f16975980e3e4085073</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOKdv4EXB684kTZr0cmydChOHzuuQJidbZ5fOtEV8ezs2p3DgnIvv-w_8CN0SPCJcivs2aN-U3o0oJjKfLgSj5AwNiGA8JklKztEAZySNJU_oJbpqmg3uQUr4AOVjH-XOlaYE30YLHXRVQRUtQ6n9qoIo990Wgm7L2kf9tGuInvXuFWxnIJoFvYWvOnxcowunqwZujnuI3mf5cvIYz18enibjeWw4EW3MpMuoYcaAK1IoEmGlc9aaQnDCBTbWaGzBCltYnBBH0kzwTGJIgGHJsUiG6O6Quwv1ZwdNqzZ1F3z_UlGaZZKylLGeYgfKhLppAji1C-VWh29FsNoXpn4LU_8K67W3g7ZpWr2Ck6RDW5oK_qScYKqm-7Dj9S_lRJu1Dgp88gN56X5n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299824644</pqid></control><display><type>article</type><title>An Efficient Parallel Triangle Enumeration on the MapReduce Framework</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>KIM, Hongyeon ; MIN, Jun-Ki</creator><creatorcontrib>KIM, Hongyeon ; MIN, Jun-Ki</creatorcontrib><description>A triangle enumerating problem is one of fundamental problems of graph data. Although several triangle enumerating algorithms based on MapReduce have been proposed, they still suffer from generating a lot of intermediate data. In this paper, we propose the efficient MapReduce algorithms to enumerate every triangle in the massive graph based on a vertex partition. Since a triangle is composed of an edge and a wedge, our algorithms check the existence of an edge connecting the end-nodes of each wedge. To generate every triangle from a graph in parallel, we first split a graph into several vertex partitions and group the edges and wedges in the graph for each pair of vertex partitions. Then, we form the triangles appearing in each group. Furthermore, to enhance the performance of our algorithm, we remove the duplicated wedges existing in several groups. Our experimental evaluation shows the performance of our proposed algorithm is better than that of the state-of-the-art algorithm in diverse environments.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2018EDP7421</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Algorithms ; Enumeration ; graph data ; Graph theory ; MapReduce ; Partitions ; triangle enumeration ; vertex partition ; Wedges</subject><ispartof>IEICE Transactions on Information and Systems, 2019/10/01, Vol.E102.D(10), pp.1902-1915</ispartof><rights>2019 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c517t-48f92c4ccefb6eb37d8ffddcb751570cdca0ded7dbd031f16975980e3e4085073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,27922,27923</link.rule.ids></links><search><creatorcontrib>KIM, Hongyeon</creatorcontrib><creatorcontrib>MIN, Jun-Ki</creatorcontrib><title>An Efficient Parallel Triangle Enumeration on the MapReduce Framework</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><description>A triangle enumerating problem is one of fundamental problems of graph data. Although several triangle enumerating algorithms based on MapReduce have been proposed, they still suffer from generating a lot of intermediate data. In this paper, we propose the efficient MapReduce algorithms to enumerate every triangle in the massive graph based on a vertex partition. Since a triangle is composed of an edge and a wedge, our algorithms check the existence of an edge connecting the end-nodes of each wedge. To generate every triangle from a graph in parallel, we first split a graph into several vertex partitions and group the edges and wedges in the graph for each pair of vertex partitions. Then, we form the triangles appearing in each group. Furthermore, to enhance the performance of our algorithm, we remove the duplicated wedges existing in several groups. Our experimental evaluation shows the performance of our proposed algorithm is better than that of the state-of-the-art algorithm in diverse environments.</description><subject>Algorithms</subject><subject>Enumeration</subject><subject>graph data</subject><subject>Graph theory</subject><subject>MapReduce</subject><subject>Partitions</subject><subject>triangle enumeration</subject><subject>vertex partition</subject><subject>Wedges</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkNFKwzAUhoMoOKdv4EXB684kTZr0cmydChOHzuuQJidbZ5fOtEV8ezs2p3DgnIvv-w_8CN0SPCJcivs2aN-U3o0oJjKfLgSj5AwNiGA8JklKztEAZySNJU_oJbpqmg3uQUr4AOVjH-XOlaYE30YLHXRVQRUtQ6n9qoIo990Wgm7L2kf9tGuInvXuFWxnIJoFvYWvOnxcowunqwZujnuI3mf5cvIYz18enibjeWw4EW3MpMuoYcaAK1IoEmGlc9aaQnDCBTbWaGzBCltYnBBH0kzwTGJIgGHJsUiG6O6Quwv1ZwdNqzZ1F3z_UlGaZZKylLGeYgfKhLppAji1C-VWh29FsNoXpn4LU_8K67W3g7ZpWr2Ck6RDW5oK_qScYKqm-7Dj9S_lRJu1Dgp88gN56X5n</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>KIM, Hongyeon</creator><creator>MIN, Jun-Ki</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20191001</creationdate><title>An Efficient Parallel Triangle Enumeration on the MapReduce Framework</title><author>KIM, Hongyeon ; MIN, Jun-Ki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-48f92c4ccefb6eb37d8ffddcb751570cdca0ded7dbd031f16975980e3e4085073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Enumeration</topic><topic>graph data</topic><topic>Graph theory</topic><topic>MapReduce</topic><topic>Partitions</topic><topic>triangle enumeration</topic><topic>vertex partition</topic><topic>Wedges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KIM, Hongyeon</creatorcontrib><creatorcontrib>MIN, Jun-Ki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KIM, Hongyeon</au><au>MIN, Jun-Ki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Parallel Triangle Enumeration on the MapReduce Framework</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>E102.D</volume><issue>10</issue><spage>1902</spage><epage>1915</epage><pages>1902-1915</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>A triangle enumerating problem is one of fundamental problems of graph data. Although several triangle enumerating algorithms based on MapReduce have been proposed, they still suffer from generating a lot of intermediate data. In this paper, we propose the efficient MapReduce algorithms to enumerate every triangle in the massive graph based on a vertex partition. Since a triangle is composed of an edge and a wedge, our algorithms check the existence of an edge connecting the end-nodes of each wedge. To generate every triangle from a graph in parallel, we first split a graph into several vertex partitions and group the edges and wedges in the graph for each pair of vertex partitions. Then, we form the triangles appearing in each group. Furthermore, to enhance the performance of our algorithm, we remove the duplicated wedges existing in several groups. Our experimental evaluation shows the performance of our proposed algorithm is better than that of the state-of-the-art algorithm in diverse environments.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2018EDP7421</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE Transactions on Information and Systems, 2019/10/01, Vol.E102.D(10), pp.1902-1915
issn 0916-8532
1745-1361
language eng
recordid cdi_proquest_journals_2299824644
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Enumeration
graph data
Graph theory
MapReduce
Partitions
triangle enumeration
vertex partition
Wedges
title An Efficient Parallel Triangle Enumeration on the MapReduce Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Parallel%20Triangle%20Enumeration%20on%20the%20MapReduce%20Framework&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=KIM,%20Hongyeon&rft.date=2019-10-01&rft.volume=E102.D&rft.issue=10&rft.spage=1902&rft.epage=1915&rft.pages=1902-1915&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2018EDP7421&rft_dat=%3Cproquest_cross%3E2299824644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299824644&rft_id=info:pmid/&rfr_iscdi=true