An Efficient Parallel Triangle Enumeration on the MapReduce Framework
A triangle enumerating problem is one of fundamental problems of graph data. Although several triangle enumerating algorithms based on MapReduce have been proposed, they still suffer from generating a lot of intermediate data. In this paper, we propose the efficient MapReduce algorithms to enumerate...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2019/10/01, Vol.E102.D(10), pp.1902-1915 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1915 |
---|---|
container_issue | 10 |
container_start_page | 1902 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E102.D |
creator | KIM, Hongyeon MIN, Jun-Ki |
description | A triangle enumerating problem is one of fundamental problems of graph data. Although several triangle enumerating algorithms based on MapReduce have been proposed, they still suffer from generating a lot of intermediate data. In this paper, we propose the efficient MapReduce algorithms to enumerate every triangle in the massive graph based on a vertex partition. Since a triangle is composed of an edge and a wedge, our algorithms check the existence of an edge connecting the end-nodes of each wedge. To generate every triangle from a graph in parallel, we first split a graph into several vertex partitions and group the edges and wedges in the graph for each pair of vertex partitions. Then, we form the triangles appearing in each group. Furthermore, to enhance the performance of our algorithm, we remove the duplicated wedges existing in several groups. Our experimental evaluation shows the performance of our proposed algorithm is better than that of the state-of-the-art algorithm in diverse environments. |
doi_str_mv | 10.1587/transinf.2018EDP7421 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2299824644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299824644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-48f92c4ccefb6eb37d8ffddcb751570cdca0ded7dbd031f16975980e3e4085073</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOKdv4EXB684kTZr0cmydChOHzuuQJidbZ5fOtEV8ezs2p3DgnIvv-w_8CN0SPCJcivs2aN-U3o0oJjKfLgSj5AwNiGA8JklKztEAZySNJU_oJbpqmg3uQUr4AOVjH-XOlaYE30YLHXRVQRUtQ6n9qoIo990Wgm7L2kf9tGuInvXuFWxnIJoFvYWvOnxcowunqwZujnuI3mf5cvIYz18enibjeWw4EW3MpMuoYcaAK1IoEmGlc9aaQnDCBTbWaGzBCltYnBBH0kzwTGJIgGHJsUiG6O6Quwv1ZwdNqzZ1F3z_UlGaZZKylLGeYgfKhLppAji1C-VWh29FsNoXpn4LU_8K67W3g7ZpWr2Ck6RDW5oK_qScYKqm-7Dj9S_lRJu1Dgp88gN56X5n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299824644</pqid></control><display><type>article</type><title>An Efficient Parallel Triangle Enumeration on the MapReduce Framework</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>KIM, Hongyeon ; MIN, Jun-Ki</creator><creatorcontrib>KIM, Hongyeon ; MIN, Jun-Ki</creatorcontrib><description>A triangle enumerating problem is one of fundamental problems of graph data. Although several triangle enumerating algorithms based on MapReduce have been proposed, they still suffer from generating a lot of intermediate data. In this paper, we propose the efficient MapReduce algorithms to enumerate every triangle in the massive graph based on a vertex partition. Since a triangle is composed of an edge and a wedge, our algorithms check the existence of an edge connecting the end-nodes of each wedge. To generate every triangle from a graph in parallel, we first split a graph into several vertex partitions and group the edges and wedges in the graph for each pair of vertex partitions. Then, we form the triangles appearing in each group. Furthermore, to enhance the performance of our algorithm, we remove the duplicated wedges existing in several groups. Our experimental evaluation shows the performance of our proposed algorithm is better than that of the state-of-the-art algorithm in diverse environments.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2018EDP7421</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Algorithms ; Enumeration ; graph data ; Graph theory ; MapReduce ; Partitions ; triangle enumeration ; vertex partition ; Wedges</subject><ispartof>IEICE Transactions on Information and Systems, 2019/10/01, Vol.E102.D(10), pp.1902-1915</ispartof><rights>2019 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c517t-48f92c4ccefb6eb37d8ffddcb751570cdca0ded7dbd031f16975980e3e4085073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,27922,27923</link.rule.ids></links><search><creatorcontrib>KIM, Hongyeon</creatorcontrib><creatorcontrib>MIN, Jun-Ki</creatorcontrib><title>An Efficient Parallel Triangle Enumeration on the MapReduce Framework</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>A triangle enumerating problem is one of fundamental problems of graph data. Although several triangle enumerating algorithms based on MapReduce have been proposed, they still suffer from generating a lot of intermediate data. In this paper, we propose the efficient MapReduce algorithms to enumerate every triangle in the massive graph based on a vertex partition. Since a triangle is composed of an edge and a wedge, our algorithms check the existence of an edge connecting the end-nodes of each wedge. To generate every triangle from a graph in parallel, we first split a graph into several vertex partitions and group the edges and wedges in the graph for each pair of vertex partitions. Then, we form the triangles appearing in each group. Furthermore, to enhance the performance of our algorithm, we remove the duplicated wedges existing in several groups. Our experimental evaluation shows the performance of our proposed algorithm is better than that of the state-of-the-art algorithm in diverse environments.</description><subject>Algorithms</subject><subject>Enumeration</subject><subject>graph data</subject><subject>Graph theory</subject><subject>MapReduce</subject><subject>Partitions</subject><subject>triangle enumeration</subject><subject>vertex partition</subject><subject>Wedges</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkNFKwzAUhoMoOKdv4EXB684kTZr0cmydChOHzuuQJidbZ5fOtEV8ezs2p3DgnIvv-w_8CN0SPCJcivs2aN-U3o0oJjKfLgSj5AwNiGA8JklKztEAZySNJU_oJbpqmg3uQUr4AOVjH-XOlaYE30YLHXRVQRUtQ6n9qoIo990Wgm7L2kf9tGuInvXuFWxnIJoFvYWvOnxcowunqwZujnuI3mf5cvIYz18enibjeWw4EW3MpMuoYcaAK1IoEmGlc9aaQnDCBTbWaGzBCltYnBBH0kzwTGJIgGHJsUiG6O6Quwv1ZwdNqzZ1F3z_UlGaZZKylLGeYgfKhLppAji1C-VWh29FsNoXpn4LU_8K67W3g7ZpWr2Ck6RDW5oK_qScYKqm-7Dj9S_lRJu1Dgp88gN56X5n</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>KIM, Hongyeon</creator><creator>MIN, Jun-Ki</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20191001</creationdate><title>An Efficient Parallel Triangle Enumeration on the MapReduce Framework</title><author>KIM, Hongyeon ; MIN, Jun-Ki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-48f92c4ccefb6eb37d8ffddcb751570cdca0ded7dbd031f16975980e3e4085073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Enumeration</topic><topic>graph data</topic><topic>Graph theory</topic><topic>MapReduce</topic><topic>Partitions</topic><topic>triangle enumeration</topic><topic>vertex partition</topic><topic>Wedges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KIM, Hongyeon</creatorcontrib><creatorcontrib>MIN, Jun-Ki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KIM, Hongyeon</au><au>MIN, Jun-Ki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Parallel Triangle Enumeration on the MapReduce Framework</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>E102.D</volume><issue>10</issue><spage>1902</spage><epage>1915</epage><pages>1902-1915</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>A triangle enumerating problem is one of fundamental problems of graph data. Although several triangle enumerating algorithms based on MapReduce have been proposed, they still suffer from generating a lot of intermediate data. In this paper, we propose the efficient MapReduce algorithms to enumerate every triangle in the massive graph based on a vertex partition. Since a triangle is composed of an edge and a wedge, our algorithms check the existence of an edge connecting the end-nodes of each wedge. To generate every triangle from a graph in parallel, we first split a graph into several vertex partitions and group the edges and wedges in the graph for each pair of vertex partitions. Then, we form the triangles appearing in each group. Furthermore, to enhance the performance of our algorithm, we remove the duplicated wedges existing in several groups. Our experimental evaluation shows the performance of our proposed algorithm is better than that of the state-of-the-art algorithm in diverse environments.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2018EDP7421</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2019/10/01, Vol.E102.D(10), pp.1902-1915 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_journals_2299824644 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Enumeration graph data Graph theory MapReduce Partitions triangle enumeration vertex partition Wedges |
title | An Efficient Parallel Triangle Enumeration on the MapReduce Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Parallel%20Triangle%20Enumeration%20on%20the%20MapReduce%20Framework&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=KIM,%20Hongyeon&rft.date=2019-10-01&rft.volume=E102.D&rft.issue=10&rft.spage=1902&rft.epage=1915&rft.pages=1902-1915&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2018EDP7421&rft_dat=%3Cproquest_cross%3E2299824644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299824644&rft_id=info:pmid/&rfr_iscdi=true |