Evidence of anisotropic Majorana bound states in 2M-WS2

Searching for Majorana bound states has become an important topic because of its potential applications in topological quantum computing. 2M-phase WS 2 , a newly synthesized superconductor, not only presents the highest superconducting transition temperature ( T c  = 8.8 K) among the intrinsic trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2019-10, Vol.15 (10), p.1046-1051
Hauptverfasser: Yuan, Yonghao, Pan, Jie, Wang, Xintong, Fang, Yuqiang, Song, Canli, Wang, Lili, He, Ke, Ma, Xucun, Zhang, Haijun, Huang, Fuqiang, Li, Wei, Xue, Qi-Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1051
container_issue 10
container_start_page 1046
container_title Nature physics
container_volume 15
creator Yuan, Yonghao
Pan, Jie
Wang, Xintong
Fang, Yuqiang
Song, Canli
Wang, Lili
He, Ke
Ma, Xucun
Zhang, Haijun
Huang, Fuqiang
Li, Wei
Xue, Qi-Kun
description Searching for Majorana bound states has become an important topic because of its potential applications in topological quantum computing. 2M-phase WS 2 , a newly synthesized superconductor, not only presents the highest superconducting transition temperature ( T c  = 8.8 K) among the intrinsic transition metal dichalcogenides but also is predicted to be a promising candidate as a topological superconductor. Using scanning tunnelling microscopy, we observe a U-shaped superconducting gap in 2M-WS 2 . Probable Majorana bound states are observed in magnetic vortices, which manifest as a non-split zero-energy state coexisting with the ordinary Caroli–de Gennes–Matricon bound states. Such non-split bound states in 2M-WS 2 show highly spatial anisotropy, originating from the anisotropy of the superconducting order parameter and Fermi velocity. Due to its simple layered structure and substitution-free lattice, 2M-WS 2 can be a building block to construct novel heterostructures and provides an ideal platform for the study of Majorana bound states. Potential Majorana bound states are seen in the vortex cores of a transition metal dichalcogenide. The properties of the superconductor mean that the bound states are highly anisotropic, and can appear at higher temperatures than other materials.
doi_str_mv 10.1038/s41567-019-0576-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2299749649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299749649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-c6e5570f4da6cb6953d748f528922a2e2a99a8204106e9dfd5b5c9b9e42a4c973</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AdTS5k8fcpZT6gBYXKi5DJpORKZrUZCr4750yoitX9yzO-S58hJwLfil4VV8VKZQ2jAtkXBnNzAGZCSMVA1mLw99sqmNyUsqGcwlaVDNilp99G6IPNHXUxb6kIadt7-nabVJ20dEm7WJLy-CGUGgfKazZyyOckqPOvZVw9nPn5Plm-bS4Y6uH2_vF9Yr5qoaBeR2UMryTrdO-0aiq1si6U1AjgIMADtHVwKXgOmDbtapRHhsMEpz0aKo5uZi425w-dqEMdpN2OY4vLQCikaglji0xtXxOpeTQ2W3u313-soLbvR87-bGjH7v3Y_dkmDZl7MbXkP_I_4--AUb-Zig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299749649</pqid></control><display><type>article</type><title>Evidence of anisotropic Majorana bound states in 2M-WS2</title><source>Springer Journals</source><source>Nature</source><creator>Yuan, Yonghao ; Pan, Jie ; Wang, Xintong ; Fang, Yuqiang ; Song, Canli ; Wang, Lili ; He, Ke ; Ma, Xucun ; Zhang, Haijun ; Huang, Fuqiang ; Li, Wei ; Xue, Qi-Kun</creator><creatorcontrib>Yuan, Yonghao ; Pan, Jie ; Wang, Xintong ; Fang, Yuqiang ; Song, Canli ; Wang, Lili ; He, Ke ; Ma, Xucun ; Zhang, Haijun ; Huang, Fuqiang ; Li, Wei ; Xue, Qi-Kun</creatorcontrib><description>Searching for Majorana bound states has become an important topic because of its potential applications in topological quantum computing. 2M-phase WS 2 , a newly synthesized superconductor, not only presents the highest superconducting transition temperature ( T c  = 8.8 K) among the intrinsic transition metal dichalcogenides but also is predicted to be a promising candidate as a topological superconductor. Using scanning tunnelling microscopy, we observe a U-shaped superconducting gap in 2M-WS 2 . Probable Majorana bound states are observed in magnetic vortices, which manifest as a non-split zero-energy state coexisting with the ordinary Caroli–de Gennes–Matricon bound states. Such non-split bound states in 2M-WS 2 show highly spatial anisotropy, originating from the anisotropy of the superconducting order parameter and Fermi velocity. Due to its simple layered structure and substitution-free lattice, 2M-WS 2 can be a building block to construct novel heterostructures and provides an ideal platform for the study of Majorana bound states. Potential Majorana bound states are seen in the vortex cores of a transition metal dichalcogenide. The properties of the superconductor mean that the bound states are highly anisotropic, and can appear at higher temperatures than other materials.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0576-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119 ; 639/766/119/1003 ; 639/766/119/2792 ; Anisotropy ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Energy ; Heterostructures ; Laboratories ; Mathematical and Computational Physics ; Microscopy ; Molecular ; Optical and Plasma Physics ; Order parameters ; Phase transitions ; Physics ; Physics and Astronomy ; Quantum computing ; Superconductivity ; Theoretical ; Topological superconductors ; Transition metal compounds ; Transition temperature ; Transition temperatures ; Vortices</subject><ispartof>Nature physics, 2019-10, Vol.15 (10), p.1046-1051</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>Copyright Nature Publishing Group Oct 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-c6e5570f4da6cb6953d748f528922a2e2a99a8204106e9dfd5b5c9b9e42a4c973</citedby><cites>FETCH-LOGICAL-c382t-c6e5570f4da6cb6953d748f528922a2e2a99a8204106e9dfd5b5c9b9e42a4c973</cites><orcidid>0000-0003-4409-7185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-019-0576-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-019-0576-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yuan, Yonghao</creatorcontrib><creatorcontrib>Pan, Jie</creatorcontrib><creatorcontrib>Wang, Xintong</creatorcontrib><creatorcontrib>Fang, Yuqiang</creatorcontrib><creatorcontrib>Song, Canli</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>He, Ke</creatorcontrib><creatorcontrib>Ma, Xucun</creatorcontrib><creatorcontrib>Zhang, Haijun</creatorcontrib><creatorcontrib>Huang, Fuqiang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Xue, Qi-Kun</creatorcontrib><title>Evidence of anisotropic Majorana bound states in 2M-WS2</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Searching for Majorana bound states has become an important topic because of its potential applications in topological quantum computing. 2M-phase WS 2 , a newly synthesized superconductor, not only presents the highest superconducting transition temperature ( T c  = 8.8 K) among the intrinsic transition metal dichalcogenides but also is predicted to be a promising candidate as a topological superconductor. Using scanning tunnelling microscopy, we observe a U-shaped superconducting gap in 2M-WS 2 . Probable Majorana bound states are observed in magnetic vortices, which manifest as a non-split zero-energy state coexisting with the ordinary Caroli–de Gennes–Matricon bound states. Such non-split bound states in 2M-WS 2 show highly spatial anisotropy, originating from the anisotropy of the superconducting order parameter and Fermi velocity. Due to its simple layered structure and substitution-free lattice, 2M-WS 2 can be a building block to construct novel heterostructures and provides an ideal platform for the study of Majorana bound states. Potential Majorana bound states are seen in the vortex cores of a transition metal dichalcogenide. The properties of the superconductor mean that the bound states are highly anisotropic, and can appear at higher temperatures than other materials.</description><subject>639/766/119</subject><subject>639/766/119/1003</subject><subject>639/766/119/2792</subject><subject>Anisotropy</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Energy</subject><subject>Heterostructures</subject><subject>Laboratories</subject><subject>Mathematical and Computational Physics</subject><subject>Microscopy</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Order parameters</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum computing</subject><subject>Superconductivity</subject><subject>Theoretical</subject><subject>Topological superconductors</subject><subject>Transition metal compounds</subject><subject>Transition temperature</subject><subject>Transition temperatures</subject><subject>Vortices</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3AdTS5k8fcpZT6gBYXKi5DJpORKZrUZCr4750yoitX9yzO-S58hJwLfil4VV8VKZQ2jAtkXBnNzAGZCSMVA1mLw99sqmNyUsqGcwlaVDNilp99G6IPNHXUxb6kIadt7-nabVJ20dEm7WJLy-CGUGgfKazZyyOckqPOvZVw9nPn5Plm-bS4Y6uH2_vF9Yr5qoaBeR2UMryTrdO-0aiq1si6U1AjgIMADtHVwKXgOmDbtapRHhsMEpz0aKo5uZi425w-dqEMdpN2OY4vLQCikaglji0xtXxOpeTQ2W3u313-soLbvR87-bGjH7v3Y_dkmDZl7MbXkP_I_4--AUb-Zig</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Yuan, Yonghao</creator><creator>Pan, Jie</creator><creator>Wang, Xintong</creator><creator>Fang, Yuqiang</creator><creator>Song, Canli</creator><creator>Wang, Lili</creator><creator>He, Ke</creator><creator>Ma, Xucun</creator><creator>Zhang, Haijun</creator><creator>Huang, Fuqiang</creator><creator>Li, Wei</creator><creator>Xue, Qi-Kun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4409-7185</orcidid></search><sort><creationdate>20191001</creationdate><title>Evidence of anisotropic Majorana bound states in 2M-WS2</title><author>Yuan, Yonghao ; Pan, Jie ; Wang, Xintong ; Fang, Yuqiang ; Song, Canli ; Wang, Lili ; He, Ke ; Ma, Xucun ; Zhang, Haijun ; Huang, Fuqiang ; Li, Wei ; Xue, Qi-Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-c6e5570f4da6cb6953d748f528922a2e2a99a8204106e9dfd5b5c9b9e42a4c973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/766/119</topic><topic>639/766/119/1003</topic><topic>639/766/119/2792</topic><topic>Anisotropy</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Energy</topic><topic>Heterostructures</topic><topic>Laboratories</topic><topic>Mathematical and Computational Physics</topic><topic>Microscopy</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Order parameters</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum computing</topic><topic>Superconductivity</topic><topic>Theoretical</topic><topic>Topological superconductors</topic><topic>Transition metal compounds</topic><topic>Transition temperature</topic><topic>Transition temperatures</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Yonghao</creatorcontrib><creatorcontrib>Pan, Jie</creatorcontrib><creatorcontrib>Wang, Xintong</creatorcontrib><creatorcontrib>Fang, Yuqiang</creatorcontrib><creatorcontrib>Song, Canli</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>He, Ke</creatorcontrib><creatorcontrib>Ma, Xucun</creatorcontrib><creatorcontrib>Zhang, Haijun</creatorcontrib><creatorcontrib>Huang, Fuqiang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Xue, Qi-Kun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Yonghao</au><au>Pan, Jie</au><au>Wang, Xintong</au><au>Fang, Yuqiang</au><au>Song, Canli</au><au>Wang, Lili</au><au>He, Ke</au><au>Ma, Xucun</au><au>Zhang, Haijun</au><au>Huang, Fuqiang</au><au>Li, Wei</au><au>Xue, Qi-Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence of anisotropic Majorana bound states in 2M-WS2</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>15</volume><issue>10</issue><spage>1046</spage><epage>1051</epage><pages>1046-1051</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Searching for Majorana bound states has become an important topic because of its potential applications in topological quantum computing. 2M-phase WS 2 , a newly synthesized superconductor, not only presents the highest superconducting transition temperature ( T c  = 8.8 K) among the intrinsic transition metal dichalcogenides but also is predicted to be a promising candidate as a topological superconductor. Using scanning tunnelling microscopy, we observe a U-shaped superconducting gap in 2M-WS 2 . Probable Majorana bound states are observed in magnetic vortices, which manifest as a non-split zero-energy state coexisting with the ordinary Caroli–de Gennes–Matricon bound states. Such non-split bound states in 2M-WS 2 show highly spatial anisotropy, originating from the anisotropy of the superconducting order parameter and Fermi velocity. Due to its simple layered structure and substitution-free lattice, 2M-WS 2 can be a building block to construct novel heterostructures and provides an ideal platform for the study of Majorana bound states. Potential Majorana bound states are seen in the vortex cores of a transition metal dichalcogenide. The properties of the superconductor mean that the bound states are highly anisotropic, and can appear at higher temperatures than other materials.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-019-0576-7</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4409-7185</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2019-10, Vol.15 (10), p.1046-1051
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2299749649
source Springer Journals; Nature
subjects 639/766/119
639/766/119/1003
639/766/119/2792
Anisotropy
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Energy
Heterostructures
Laboratories
Mathematical and Computational Physics
Microscopy
Molecular
Optical and Plasma Physics
Order parameters
Phase transitions
Physics
Physics and Astronomy
Quantum computing
Superconductivity
Theoretical
Topological superconductors
Transition metal compounds
Transition temperature
Transition temperatures
Vortices
title Evidence of anisotropic Majorana bound states in 2M-WS2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T17%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20of%20anisotropic%20Majorana%20bound%20states%20in%202M-WS2&rft.jtitle=Nature%20physics&rft.au=Yuan,%20Yonghao&rft.date=2019-10-01&rft.volume=15&rft.issue=10&rft.spage=1046&rft.epage=1051&rft.pages=1046-1051&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0576-7&rft_dat=%3Cproquest_cross%3E2299749649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299749649&rft_id=info:pmid/&rfr_iscdi=true