Improvement of Deep Reactive Ion Etching Process For Motional Resistance Reduction of Capacitively Transduced Vibrating Resonators

Motional resistance is one of the most important performance metrics for high quality factor, low power, and complementary metal-oxide semiconductor (CMOS)-compatible capacitively transduced vibrating micromechanical resonators. The motional resistance is primarily set by the electrode-to-resonator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors letters 2018-03, Vol.2 (1), p.1-4
Hauptverfasser: Alsolami, Abdulrahman, Zaman, Adnan, Rivera, Ivan Fernando, Baghelani, Masoud, Jing Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 1
container_start_page 1
container_title IEEE sensors letters
container_volume 2
creator Alsolami, Abdulrahman
Zaman, Adnan
Rivera, Ivan Fernando
Baghelani, Masoud
Jing Wang
description Motional resistance is one of the most important performance metrics for high quality factor, low power, and complementary metal-oxide semiconductor (CMOS)-compatible capacitively transduced vibrating micromechanical resonators. The motional resistance is primarily set by the electrode-to-resonator air gap that can be formed by deep reactive ion etching (DRIE) process. Although the state-of-the-art DRIE technologies can achieve a narrow capacitive air gap down to 1 μm or less, the effective gap tends to be larger than designed values due to the sidewall roughness known as scalloping. Systematic modifications of all key process parameters are presented in this article for lowering the sidewall roughness to result in an up to 2× reduction of the effective capacitive transducer gap, which could lead to an up to 16× decrease of the effective motional resistance.
doi_str_mv 10.1109/LSENS.2018.2797076
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2299479318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8267205</ieee_id><sourcerecordid>2299479318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-d2bfe37159582a10e98c045480ebe68b720fe0261fc0cdb62f5e24e98d5dcd7d3</originalsourceid><addsrcrecordid>eNpNkE1PAyEURSdGE5vaP6AbEtdTgflgWJraapP6EVvdEgbeKE07VKBNuvWXy9jGuOIFzj3h3SS5JHhICOY3s_n4aT6kmFRDyjjDrDxJejRnRUpyRk__zefJwPslxhGlDGe4l3xP1xtnd7CGNiDboDuADXoFqYLZAZraFo2D-jTtB3pxVoH3aGIderTB2FauIumND7JVEEe9Vd11pxnJjVSmc6z2aOFk6-MjaPRuaidDp4vJaAjW-YvkrJErD4Pj2U_eJuPF6CGdPd9PR7ezVGUZD6mmdQMZIwUvKioJBl4pnBd5haGGsqoZxQ1gWpJGYaXrkjYF0DxSutBKM531k-uDNy78tQUfxNJuXdzCC0o5zxnPSBUpeqCUs947aMTGmbV0e0Gw6OoWv3WLrm5xrDuGrg4hAwB_gYqW8VNF9gPi_H4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299479318</pqid></control><display><type>article</type><title>Improvement of Deep Reactive Ion Etching Process For Motional Resistance Reduction of Capacitively Transduced Vibrating Resonators</title><source>IEEE Electronic Library (IEL)</source><creator>Alsolami, Abdulrahman ; Zaman, Adnan ; Rivera, Ivan Fernando ; Baghelani, Masoud ; Jing Wang</creator><creatorcontrib>Alsolami, Abdulrahman ; Zaman, Adnan ; Rivera, Ivan Fernando ; Baghelani, Masoud ; Jing Wang</creatorcontrib><description>Motional resistance is one of the most important performance metrics for high quality factor, low power, and complementary metal-oxide semiconductor (CMOS)-compatible capacitively transduced vibrating micromechanical resonators. The motional resistance is primarily set by the electrode-to-resonator air gap that can be formed by deep reactive ion etching (DRIE) process. Although the state-of-the-art DRIE technologies can achieve a narrow capacitive air gap down to 1 μm or less, the effective gap tends to be larger than designed values due to the sidewall roughness known as scalloping. Systematic modifications of all key process parameters are presented in this article for lowering the sidewall roughness to result in an up to 2× reduction of the effective capacitive transducer gap, which could lead to an up to 16× decrease of the effective motional resistance.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2018.2797076</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air gaps ; capacitive transducers ; CMOS ; deep reactive ion etching (DRIE) ; Iterative closest point algorithm ; Metal oxides ; Motional resistance ; Parameter modification ; Performance measurement ; Process parameters ; Q factors ; quality factor ; Reactive ion etching ; Reduction ; Resistance ; Resonators ; Roughness ; Scalloping ; Sensor-actuators ; Silicon ; Substrates ; Sulfur hexafluoride ; vibrating micromechanical resonators</subject><ispartof>IEEE sensors letters, 2018-03, Vol.2 (1), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-d2bfe37159582a10e98c045480ebe68b720fe0261fc0cdb62f5e24e98d5dcd7d3</citedby><cites>FETCH-LOGICAL-c339t-d2bfe37159582a10e98c045480ebe68b720fe0261fc0cdb62f5e24e98d5dcd7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8267205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8267205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alsolami, Abdulrahman</creatorcontrib><creatorcontrib>Zaman, Adnan</creatorcontrib><creatorcontrib>Rivera, Ivan Fernando</creatorcontrib><creatorcontrib>Baghelani, Masoud</creatorcontrib><creatorcontrib>Jing Wang</creatorcontrib><title>Improvement of Deep Reactive Ion Etching Process For Motional Resistance Reduction of Capacitively Transduced Vibrating Resonators</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>Motional resistance is one of the most important performance metrics for high quality factor, low power, and complementary metal-oxide semiconductor (CMOS)-compatible capacitively transduced vibrating micromechanical resonators. The motional resistance is primarily set by the electrode-to-resonator air gap that can be formed by deep reactive ion etching (DRIE) process. Although the state-of-the-art DRIE technologies can achieve a narrow capacitive air gap down to 1 μm or less, the effective gap tends to be larger than designed values due to the sidewall roughness known as scalloping. Systematic modifications of all key process parameters are presented in this article for lowering the sidewall roughness to result in an up to 2× reduction of the effective capacitive transducer gap, which could lead to an up to 16× decrease of the effective motional resistance.</description><subject>Air gaps</subject><subject>capacitive transducers</subject><subject>CMOS</subject><subject>deep reactive ion etching (DRIE)</subject><subject>Iterative closest point algorithm</subject><subject>Metal oxides</subject><subject>Motional resistance</subject><subject>Parameter modification</subject><subject>Performance measurement</subject><subject>Process parameters</subject><subject>Q factors</subject><subject>quality factor</subject><subject>Reactive ion etching</subject><subject>Reduction</subject><subject>Resistance</subject><subject>Resonators</subject><subject>Roughness</subject><subject>Scalloping</subject><subject>Sensor-actuators</subject><subject>Silicon</subject><subject>Substrates</subject><subject>Sulfur hexafluoride</subject><subject>vibrating micromechanical resonators</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAyEURSdGE5vaP6AbEtdTgflgWJraapP6EVvdEgbeKE07VKBNuvWXy9jGuOIFzj3h3SS5JHhICOY3s_n4aT6kmFRDyjjDrDxJejRnRUpyRk__zefJwPslxhGlDGe4l3xP1xtnd7CGNiDboDuADXoFqYLZAZraFo2D-jTtB3pxVoH3aGIderTB2FauIumND7JVEEe9Vd11pxnJjVSmc6z2aOFk6-MjaPRuaidDp4vJaAjW-YvkrJErD4Pj2U_eJuPF6CGdPd9PR7ezVGUZD6mmdQMZIwUvKioJBl4pnBd5haGGsqoZxQ1gWpJGYaXrkjYF0DxSutBKM531k-uDNy78tQUfxNJuXdzCC0o5zxnPSBUpeqCUs947aMTGmbV0e0Gw6OoWv3WLrm5xrDuGrg4hAwB_gYqW8VNF9gPi_H4I</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Alsolami, Abdulrahman</creator><creator>Zaman, Adnan</creator><creator>Rivera, Ivan Fernando</creator><creator>Baghelani, Masoud</creator><creator>Jing Wang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20180301</creationdate><title>Improvement of Deep Reactive Ion Etching Process For Motional Resistance Reduction of Capacitively Transduced Vibrating Resonators</title><author>Alsolami, Abdulrahman ; Zaman, Adnan ; Rivera, Ivan Fernando ; Baghelani, Masoud ; Jing Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-d2bfe37159582a10e98c045480ebe68b720fe0261fc0cdb62f5e24e98d5dcd7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air gaps</topic><topic>capacitive transducers</topic><topic>CMOS</topic><topic>deep reactive ion etching (DRIE)</topic><topic>Iterative closest point algorithm</topic><topic>Metal oxides</topic><topic>Motional resistance</topic><topic>Parameter modification</topic><topic>Performance measurement</topic><topic>Process parameters</topic><topic>Q factors</topic><topic>quality factor</topic><topic>Reactive ion etching</topic><topic>Reduction</topic><topic>Resistance</topic><topic>Resonators</topic><topic>Roughness</topic><topic>Scalloping</topic><topic>Sensor-actuators</topic><topic>Silicon</topic><topic>Substrates</topic><topic>Sulfur hexafluoride</topic><topic>vibrating micromechanical resonators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alsolami, Abdulrahman</creatorcontrib><creatorcontrib>Zaman, Adnan</creatorcontrib><creatorcontrib>Rivera, Ivan Fernando</creatorcontrib><creatorcontrib>Baghelani, Masoud</creatorcontrib><creatorcontrib>Jing Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alsolami, Abdulrahman</au><au>Zaman, Adnan</au><au>Rivera, Ivan Fernando</au><au>Baghelani, Masoud</au><au>Jing Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of Deep Reactive Ion Etching Process For Motional Resistance Reduction of Capacitively Transduced Vibrating Resonators</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>2</volume><issue>1</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>Motional resistance is one of the most important performance metrics for high quality factor, low power, and complementary metal-oxide semiconductor (CMOS)-compatible capacitively transduced vibrating micromechanical resonators. The motional resistance is primarily set by the electrode-to-resonator air gap that can be formed by deep reactive ion etching (DRIE) process. Although the state-of-the-art DRIE technologies can achieve a narrow capacitive air gap down to 1 μm or less, the effective gap tends to be larger than designed values due to the sidewall roughness known as scalloping. Systematic modifications of all key process parameters are presented in this article for lowering the sidewall roughness to result in an up to 2× reduction of the effective capacitive transducer gap, which could lead to an up to 16× decrease of the effective motional resistance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2018.2797076</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1472
ispartof IEEE sensors letters, 2018-03, Vol.2 (1), p.1-4
issn 2475-1472
2475-1472
language eng
recordid cdi_proquest_journals_2299479318
source IEEE Electronic Library (IEL)
subjects Air gaps
capacitive transducers
CMOS
deep reactive ion etching (DRIE)
Iterative closest point algorithm
Metal oxides
Motional resistance
Parameter modification
Performance measurement
Process parameters
Q factors
quality factor
Reactive ion etching
Reduction
Resistance
Resonators
Roughness
Scalloping
Sensor-actuators
Silicon
Substrates
Sulfur hexafluoride
vibrating micromechanical resonators
title Improvement of Deep Reactive Ion Etching Process For Motional Resistance Reduction of Capacitively Transduced Vibrating Resonators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20Deep%20Reactive%20Ion%20Etching%20Process%20For%20Motional%20Resistance%20Reduction%20of%20Capacitively%20Transduced%20Vibrating%20Resonators&rft.jtitle=IEEE%20sensors%20letters&rft.au=Alsolami,%20Abdulrahman&rft.date=2018-03-01&rft.volume=2&rft.issue=1&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2018.2797076&rft_dat=%3Cproquest_RIE%3E2299479318%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299479318&rft_id=info:pmid/&rft_ieee_id=8267205&rfr_iscdi=true