Improvement of Deep Reactive Ion Etching Process For Motional Resistance Reduction of Capacitively Transduced Vibrating Resonators
Motional resistance is one of the most important performance metrics for high quality factor, low power, and complementary metal-oxide semiconductor (CMOS)-compatible capacitively transduced vibrating micromechanical resonators. The motional resistance is primarily set by the electrode-to-resonator...
Gespeichert in:
Veröffentlicht in: | IEEE sensors letters 2018-03, Vol.2 (1), p.1-4 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE sensors letters |
container_volume | 2 |
creator | Alsolami, Abdulrahman Zaman, Adnan Rivera, Ivan Fernando Baghelani, Masoud Jing Wang |
description | Motional resistance is one of the most important performance metrics for high quality factor, low power, and complementary metal-oxide semiconductor (CMOS)-compatible capacitively transduced vibrating micromechanical resonators. The motional resistance is primarily set by the electrode-to-resonator air gap that can be formed by deep reactive ion etching (DRIE) process. Although the state-of-the-art DRIE technologies can achieve a narrow capacitive air gap down to 1 μm or less, the effective gap tends to be larger than designed values due to the sidewall roughness known as scalloping. Systematic modifications of all key process parameters are presented in this article for lowering the sidewall roughness to result in an up to 2× reduction of the effective capacitive transducer gap, which could lead to an up to 16× decrease of the effective motional resistance. |
doi_str_mv | 10.1109/LSENS.2018.2797076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2299479318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8267205</ieee_id><sourcerecordid>2299479318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-d2bfe37159582a10e98c045480ebe68b720fe0261fc0cdb62f5e24e98d5dcd7d3</originalsourceid><addsrcrecordid>eNpNkE1PAyEURSdGE5vaP6AbEtdTgflgWJraapP6EVvdEgbeKE07VKBNuvWXy9jGuOIFzj3h3SS5JHhICOY3s_n4aT6kmFRDyjjDrDxJejRnRUpyRk__zefJwPslxhGlDGe4l3xP1xtnd7CGNiDboDuADXoFqYLZAZraFo2D-jTtB3pxVoH3aGIderTB2FauIumND7JVEEe9Vd11pxnJjVSmc6z2aOFk6-MjaPRuaidDp4vJaAjW-YvkrJErD4Pj2U_eJuPF6CGdPd9PR7ezVGUZD6mmdQMZIwUvKioJBl4pnBd5haGGsqoZxQ1gWpJGYaXrkjYF0DxSutBKM531k-uDNy78tQUfxNJuXdzCC0o5zxnPSBUpeqCUs947aMTGmbV0e0Gw6OoWv3WLrm5xrDuGrg4hAwB_gYqW8VNF9gPi_H4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299479318</pqid></control><display><type>article</type><title>Improvement of Deep Reactive Ion Etching Process For Motional Resistance Reduction of Capacitively Transduced Vibrating Resonators</title><source>IEEE Electronic Library (IEL)</source><creator>Alsolami, Abdulrahman ; Zaman, Adnan ; Rivera, Ivan Fernando ; Baghelani, Masoud ; Jing Wang</creator><creatorcontrib>Alsolami, Abdulrahman ; Zaman, Adnan ; Rivera, Ivan Fernando ; Baghelani, Masoud ; Jing Wang</creatorcontrib><description>Motional resistance is one of the most important performance metrics for high quality factor, low power, and complementary metal-oxide semiconductor (CMOS)-compatible capacitively transduced vibrating micromechanical resonators. The motional resistance is primarily set by the electrode-to-resonator air gap that can be formed by deep reactive ion etching (DRIE) process. Although the state-of-the-art DRIE technologies can achieve a narrow capacitive air gap down to 1 μm or less, the effective gap tends to be larger than designed values due to the sidewall roughness known as scalloping. Systematic modifications of all key process parameters are presented in this article for lowering the sidewall roughness to result in an up to 2× reduction of the effective capacitive transducer gap, which could lead to an up to 16× decrease of the effective motional resistance.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2018.2797076</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air gaps ; capacitive transducers ; CMOS ; deep reactive ion etching (DRIE) ; Iterative closest point algorithm ; Metal oxides ; Motional resistance ; Parameter modification ; Performance measurement ; Process parameters ; Q factors ; quality factor ; Reactive ion etching ; Reduction ; Resistance ; Resonators ; Roughness ; Scalloping ; Sensor-actuators ; Silicon ; Substrates ; Sulfur hexafluoride ; vibrating micromechanical resonators</subject><ispartof>IEEE sensors letters, 2018-03, Vol.2 (1), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-d2bfe37159582a10e98c045480ebe68b720fe0261fc0cdb62f5e24e98d5dcd7d3</citedby><cites>FETCH-LOGICAL-c339t-d2bfe37159582a10e98c045480ebe68b720fe0261fc0cdb62f5e24e98d5dcd7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8267205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8267205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alsolami, Abdulrahman</creatorcontrib><creatorcontrib>Zaman, Adnan</creatorcontrib><creatorcontrib>Rivera, Ivan Fernando</creatorcontrib><creatorcontrib>Baghelani, Masoud</creatorcontrib><creatorcontrib>Jing Wang</creatorcontrib><title>Improvement of Deep Reactive Ion Etching Process For Motional Resistance Reduction of Capacitively Transduced Vibrating Resonators</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>Motional resistance is one of the most important performance metrics for high quality factor, low power, and complementary metal-oxide semiconductor (CMOS)-compatible capacitively transduced vibrating micromechanical resonators. The motional resistance is primarily set by the electrode-to-resonator air gap that can be formed by deep reactive ion etching (DRIE) process. Although the state-of-the-art DRIE technologies can achieve a narrow capacitive air gap down to 1 μm or less, the effective gap tends to be larger than designed values due to the sidewall roughness known as scalloping. Systematic modifications of all key process parameters are presented in this article for lowering the sidewall roughness to result in an up to 2× reduction of the effective capacitive transducer gap, which could lead to an up to 16× decrease of the effective motional resistance.</description><subject>Air gaps</subject><subject>capacitive transducers</subject><subject>CMOS</subject><subject>deep reactive ion etching (DRIE)</subject><subject>Iterative closest point algorithm</subject><subject>Metal oxides</subject><subject>Motional resistance</subject><subject>Parameter modification</subject><subject>Performance measurement</subject><subject>Process parameters</subject><subject>Q factors</subject><subject>quality factor</subject><subject>Reactive ion etching</subject><subject>Reduction</subject><subject>Resistance</subject><subject>Resonators</subject><subject>Roughness</subject><subject>Scalloping</subject><subject>Sensor-actuators</subject><subject>Silicon</subject><subject>Substrates</subject><subject>Sulfur hexafluoride</subject><subject>vibrating micromechanical resonators</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAyEURSdGE5vaP6AbEtdTgflgWJraapP6EVvdEgbeKE07VKBNuvWXy9jGuOIFzj3h3SS5JHhICOY3s_n4aT6kmFRDyjjDrDxJejRnRUpyRk__zefJwPslxhGlDGe4l3xP1xtnd7CGNiDboDuADXoFqYLZAZraFo2D-jTtB3pxVoH3aGIderTB2FauIumND7JVEEe9Vd11pxnJjVSmc6z2aOFk6-MjaPRuaidDp4vJaAjW-YvkrJErD4Pj2U_eJuPF6CGdPd9PR7ezVGUZD6mmdQMZIwUvKioJBl4pnBd5haGGsqoZxQ1gWpJGYaXrkjYF0DxSutBKM531k-uDNy78tQUfxNJuXdzCC0o5zxnPSBUpeqCUs947aMTGmbV0e0Gw6OoWv3WLrm5xrDuGrg4hAwB_gYqW8VNF9gPi_H4I</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Alsolami, Abdulrahman</creator><creator>Zaman, Adnan</creator><creator>Rivera, Ivan Fernando</creator><creator>Baghelani, Masoud</creator><creator>Jing Wang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20180301</creationdate><title>Improvement of Deep Reactive Ion Etching Process For Motional Resistance Reduction of Capacitively Transduced Vibrating Resonators</title><author>Alsolami, Abdulrahman ; Zaman, Adnan ; Rivera, Ivan Fernando ; Baghelani, Masoud ; Jing Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-d2bfe37159582a10e98c045480ebe68b720fe0261fc0cdb62f5e24e98d5dcd7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air gaps</topic><topic>capacitive transducers</topic><topic>CMOS</topic><topic>deep reactive ion etching (DRIE)</topic><topic>Iterative closest point algorithm</topic><topic>Metal oxides</topic><topic>Motional resistance</topic><topic>Parameter modification</topic><topic>Performance measurement</topic><topic>Process parameters</topic><topic>Q factors</topic><topic>quality factor</topic><topic>Reactive ion etching</topic><topic>Reduction</topic><topic>Resistance</topic><topic>Resonators</topic><topic>Roughness</topic><topic>Scalloping</topic><topic>Sensor-actuators</topic><topic>Silicon</topic><topic>Substrates</topic><topic>Sulfur hexafluoride</topic><topic>vibrating micromechanical resonators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alsolami, Abdulrahman</creatorcontrib><creatorcontrib>Zaman, Adnan</creatorcontrib><creatorcontrib>Rivera, Ivan Fernando</creatorcontrib><creatorcontrib>Baghelani, Masoud</creatorcontrib><creatorcontrib>Jing Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alsolami, Abdulrahman</au><au>Zaman, Adnan</au><au>Rivera, Ivan Fernando</au><au>Baghelani, Masoud</au><au>Jing Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of Deep Reactive Ion Etching Process For Motional Resistance Reduction of Capacitively Transduced Vibrating Resonators</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>2</volume><issue>1</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>Motional resistance is one of the most important performance metrics for high quality factor, low power, and complementary metal-oxide semiconductor (CMOS)-compatible capacitively transduced vibrating micromechanical resonators. The motional resistance is primarily set by the electrode-to-resonator air gap that can be formed by deep reactive ion etching (DRIE) process. Although the state-of-the-art DRIE technologies can achieve a narrow capacitive air gap down to 1 μm or less, the effective gap tends to be larger than designed values due to the sidewall roughness known as scalloping. Systematic modifications of all key process parameters are presented in this article for lowering the sidewall roughness to result in an up to 2× reduction of the effective capacitive transducer gap, which could lead to an up to 16× decrease of the effective motional resistance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2018.2797076</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1472 |
ispartof | IEEE sensors letters, 2018-03, Vol.2 (1), p.1-4 |
issn | 2475-1472 2475-1472 |
language | eng |
recordid | cdi_proquest_journals_2299479318 |
source | IEEE Electronic Library (IEL) |
subjects | Air gaps capacitive transducers CMOS deep reactive ion etching (DRIE) Iterative closest point algorithm Metal oxides Motional resistance Parameter modification Performance measurement Process parameters Q factors quality factor Reactive ion etching Reduction Resistance Resonators Roughness Scalloping Sensor-actuators Silicon Substrates Sulfur hexafluoride vibrating micromechanical resonators |
title | Improvement of Deep Reactive Ion Etching Process For Motional Resistance Reduction of Capacitively Transduced Vibrating Resonators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20Deep%20Reactive%20Ion%20Etching%20Process%20For%20Motional%20Resistance%20Reduction%20of%20Capacitively%20Transduced%20Vibrating%20Resonators&rft.jtitle=IEEE%20sensors%20letters&rft.au=Alsolami,%20Abdulrahman&rft.date=2018-03-01&rft.volume=2&rft.issue=1&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2018.2797076&rft_dat=%3Cproquest_RIE%3E2299479318%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299479318&rft_id=info:pmid/&rft_ieee_id=8267205&rfr_iscdi=true |