Community detection in civil society online networks: Theoretical guide and empirical assessment
•A typology of meanings of communities in civil society online networks is proposed.•Methodological guidance grounded in substantive social theory is offered.•Very different communities emerge in the same network, depending on the method. Community detection is a fundamental challenge in the analysi...
Gespeichert in:
Veröffentlicht in: | Social networks 2019-10, Vol.59, p.120-133 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 133 |
---|---|
container_issue | |
container_start_page | 120 |
container_title | Social networks |
container_volume | 59 |
creator | Stoltenberg, Daniela Maier, Daniel Waldherr, Annie |
description | •A typology of meanings of communities in civil society online networks is proposed.•Methodological guidance grounded in substantive social theory is offered.•Very different communities emerge in the same network, depending on the method.
Community detection is a fundamental challenge in the analysis of online networks. However, there is a lack of consensus regarding how to accomplish this task in a manner that acknowledges domain-specific, substantive social theory. We develop a typology of what social phenomena communities of hyperlinked actors may signify—topical similarities, ideological associations, strategic alliances, and potential user traffic—and offer recommendations for community detection grounded in these concepts. Testing procedures on a hyperlink network of the food safety movement, we demonstrate that the handling of tie directions and weights as well as algorithm choice influence which communities are ultimately detected in such a network. |
doi_str_mv | 10.1016/j.socnet.2019.07.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2299444266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378873318301138</els_id><sourcerecordid>2299444266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-490f7688917bdc0fa9e7bfba618275ded9fb599e40bd561e77e261f73b91ca273</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxgsMSfYSRrbDEio4kuqxFJm49gXcEjsYqdF_fe4hJnppLv3Q_cgdElJTgmtr7s8eu1gzAtCRU5YTgg9QjPKmcgKSukxmpGS8YyzsjxFZzF2hJCaUT5Db0s_DFtnxz02MIIerXfYOqztzvY4xVpIJ-966wCnim8fPuMNXn-ADzBarXr8vrUGsHIGw7Cx4XenYoQYB3DjOTppVR_h4m_O0evD_Xr5lK1eHp-Xd6tMl5yMWSVIy2rOBWWN0aRVAljTNqqmvGALA0a0zUIIqEhjFjUFxqCoacvKRlCtClbO0dWUuwn-awtxlJ3fBpcqZVEIUVVVUddJVU0qHXyMAVq5CXZQYS8pkQeWspMTS3lgKQmTiWWy3U42SB_sLAQZExinwdiQmEnj7f8BP5c2gQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299444266</pqid></control><display><type>article</type><title>Community detection in civil society online networks: Theoretical guide and empirical assessment</title><source>Elsevier ScienceDirect Journals</source><source>Sociological Abstracts</source><creator>Stoltenberg, Daniela ; Maier, Daniel ; Waldherr, Annie</creator><creatorcontrib>Stoltenberg, Daniela ; Maier, Daniel ; Waldherr, Annie</creatorcontrib><description>•A typology of meanings of communities in civil society online networks is proposed.•Methodological guidance grounded in substantive social theory is offered.•Very different communities emerge in the same network, depending on the method.
Community detection is a fundamental challenge in the analysis of online networks. However, there is a lack of consensus regarding how to accomplish this task in a manner that acknowledges domain-specific, substantive social theory. We develop a typology of what social phenomena communities of hyperlinked actors may signify—topical similarities, ideological associations, strategic alliances, and potential user traffic—and offer recommendations for community detection grounded in these concepts. Testing procedures on a hyperlink network of the food safety movement, we demonstrate that the handling of tie directions and weights as well as algorithm choice influence which communities are ultimately detected in such a network.</description><identifier>ISSN: 0378-8733</identifier><identifier>EISSN: 1879-2111</identifier><identifier>DOI: 10.1016/j.socnet.2019.07.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alliances ; Civil society ; Cohesive subgroup ; Community ; Community detection ; Computational methods ; Food ; Food safety ; Hyperlink network analysis ; Internet ; Social theories ; Typology</subject><ispartof>Social networks, 2019-10, Vol.59, p.120-133</ispartof><rights>2019 The Authors</rights><rights>Copyright Elsevier Science Ltd. Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-490f7688917bdc0fa9e7bfba618275ded9fb599e40bd561e77e261f73b91ca273</citedby><cites>FETCH-LOGICAL-c380t-490f7688917bdc0fa9e7bfba618275ded9fb599e40bd561e77e261f73b91ca273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378873318301138$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,33753,65309</link.rule.ids></links><search><creatorcontrib>Stoltenberg, Daniela</creatorcontrib><creatorcontrib>Maier, Daniel</creatorcontrib><creatorcontrib>Waldherr, Annie</creatorcontrib><title>Community detection in civil society online networks: Theoretical guide and empirical assessment</title><title>Social networks</title><description>•A typology of meanings of communities in civil society online networks is proposed.•Methodological guidance grounded in substantive social theory is offered.•Very different communities emerge in the same network, depending on the method.
Community detection is a fundamental challenge in the analysis of online networks. However, there is a lack of consensus regarding how to accomplish this task in a manner that acknowledges domain-specific, substantive social theory. We develop a typology of what social phenomena communities of hyperlinked actors may signify—topical similarities, ideological associations, strategic alliances, and potential user traffic—and offer recommendations for community detection grounded in these concepts. Testing procedures on a hyperlink network of the food safety movement, we demonstrate that the handling of tie directions and weights as well as algorithm choice influence which communities are ultimately detected in such a network.</description><subject>Alliances</subject><subject>Civil society</subject><subject>Cohesive subgroup</subject><subject>Community</subject><subject>Community detection</subject><subject>Computational methods</subject><subject>Food</subject><subject>Food safety</subject><subject>Hyperlink network analysis</subject><subject>Internet</subject><subject>Social theories</subject><subject>Typology</subject><issn>0378-8733</issn><issn>1879-2111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwDxgsMSfYSRrbDEio4kuqxFJm49gXcEjsYqdF_fe4hJnppLv3Q_cgdElJTgmtr7s8eu1gzAtCRU5YTgg9QjPKmcgKSukxmpGS8YyzsjxFZzF2hJCaUT5Db0s_DFtnxz02MIIerXfYOqztzvY4xVpIJ-966wCnim8fPuMNXn-ADzBarXr8vrUGsHIGw7Cx4XenYoQYB3DjOTppVR_h4m_O0evD_Xr5lK1eHp-Xd6tMl5yMWSVIy2rOBWWN0aRVAljTNqqmvGALA0a0zUIIqEhjFjUFxqCoacvKRlCtClbO0dWUuwn-awtxlJ3fBpcqZVEIUVVVUddJVU0qHXyMAVq5CXZQYS8pkQeWspMTS3lgKQmTiWWy3U42SB_sLAQZExinwdiQmEnj7f8BP5c2gQE</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Stoltenberg, Daniela</creator><creator>Maier, Daniel</creator><creator>Waldherr, Annie</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope></search><sort><creationdate>201910</creationdate><title>Community detection in civil society online networks: Theoretical guide and empirical assessment</title><author>Stoltenberg, Daniela ; Maier, Daniel ; Waldherr, Annie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-490f7688917bdc0fa9e7bfba618275ded9fb599e40bd561e77e261f73b91ca273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alliances</topic><topic>Civil society</topic><topic>Cohesive subgroup</topic><topic>Community</topic><topic>Community detection</topic><topic>Computational methods</topic><topic>Food</topic><topic>Food safety</topic><topic>Hyperlink network analysis</topic><topic>Internet</topic><topic>Social theories</topic><topic>Typology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoltenberg, Daniela</creatorcontrib><creatorcontrib>Maier, Daniel</creatorcontrib><creatorcontrib>Waldherr, Annie</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Social networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoltenberg, Daniela</au><au>Maier, Daniel</au><au>Waldherr, Annie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Community detection in civil society online networks: Theoretical guide and empirical assessment</atitle><jtitle>Social networks</jtitle><date>2019-10</date><risdate>2019</risdate><volume>59</volume><spage>120</spage><epage>133</epage><pages>120-133</pages><issn>0378-8733</issn><eissn>1879-2111</eissn><abstract>•A typology of meanings of communities in civil society online networks is proposed.•Methodological guidance grounded in substantive social theory is offered.•Very different communities emerge in the same network, depending on the method.
Community detection is a fundamental challenge in the analysis of online networks. However, there is a lack of consensus regarding how to accomplish this task in a manner that acknowledges domain-specific, substantive social theory. We develop a typology of what social phenomena communities of hyperlinked actors may signify—topical similarities, ideological associations, strategic alliances, and potential user traffic—and offer recommendations for community detection grounded in these concepts. Testing procedures on a hyperlink network of the food safety movement, we demonstrate that the handling of tie directions and weights as well as algorithm choice influence which communities are ultimately detected in such a network.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.socnet.2019.07.001</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-8733 |
ispartof | Social networks, 2019-10, Vol.59, p.120-133 |
issn | 0378-8733 1879-2111 |
language | eng |
recordid | cdi_proquest_journals_2299444266 |
source | Elsevier ScienceDirect Journals; Sociological Abstracts |
subjects | Alliances Civil society Cohesive subgroup Community Community detection Computational methods Food Food safety Hyperlink network analysis Internet Social theories Typology |
title | Community detection in civil society online networks: Theoretical guide and empirical assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Community%20detection%20in%20civil%20society%20online%20networks:%20Theoretical%20guide%20and%20empirical%20assessment&rft.jtitle=Social%20networks&rft.au=Stoltenberg,%20Daniela&rft.date=2019-10&rft.volume=59&rft.spage=120&rft.epage=133&rft.pages=120-133&rft.issn=0378-8733&rft.eissn=1879-2111&rft_id=info:doi/10.1016/j.socnet.2019.07.001&rft_dat=%3Cproquest_cross%3E2299444266%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299444266&rft_id=info:pmid/&rft_els_id=S0378873318301138&rfr_iscdi=true |