Community detection in civil society online networks: Theoretical guide and empirical assessment

•A typology of meanings of communities in civil society online networks is proposed.•Methodological guidance grounded in substantive social theory is offered.•Very different communities emerge in the same network, depending on the method. Community detection is a fundamental challenge in the analysi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social networks 2019-10, Vol.59, p.120-133
Hauptverfasser: Stoltenberg, Daniela, Maier, Daniel, Waldherr, Annie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue
container_start_page 120
container_title Social networks
container_volume 59
creator Stoltenberg, Daniela
Maier, Daniel
Waldherr, Annie
description •A typology of meanings of communities in civil society online networks is proposed.•Methodological guidance grounded in substantive social theory is offered.•Very different communities emerge in the same network, depending on the method. Community detection is a fundamental challenge in the analysis of online networks. However, there is a lack of consensus regarding how to accomplish this task in a manner that acknowledges domain-specific, substantive social theory. We develop a typology of what social phenomena communities of hyperlinked actors may signify—topical similarities, ideological associations, strategic alliances, and potential user traffic—and offer recommendations for community detection grounded in these concepts. Testing procedures on a hyperlink network of the food safety movement, we demonstrate that the handling of tie directions and weights as well as algorithm choice influence which communities are ultimately detected in such a network.
doi_str_mv 10.1016/j.socnet.2019.07.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2299444266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378873318301138</els_id><sourcerecordid>2299444266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-490f7688917bdc0fa9e7bfba618275ded9fb599e40bd561e77e261f73b91ca273</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxgsMSfYSRrbDEio4kuqxFJm49gXcEjsYqdF_fe4hJnppLv3Q_cgdElJTgmtr7s8eu1gzAtCRU5YTgg9QjPKmcgKSukxmpGS8YyzsjxFZzF2hJCaUT5Db0s_DFtnxz02MIIerXfYOqztzvY4xVpIJ-966wCnim8fPuMNXn-ADzBarXr8vrUGsHIGw7Cx4XenYoQYB3DjOTppVR_h4m_O0evD_Xr5lK1eHp-Xd6tMl5yMWSVIy2rOBWWN0aRVAljTNqqmvGALA0a0zUIIqEhjFjUFxqCoacvKRlCtClbO0dWUuwn-awtxlJ3fBpcqZVEIUVVVUddJVU0qHXyMAVq5CXZQYS8pkQeWspMTS3lgKQmTiWWy3U42SB_sLAQZExinwdiQmEnj7f8BP5c2gQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299444266</pqid></control><display><type>article</type><title>Community detection in civil society online networks: Theoretical guide and empirical assessment</title><source>Elsevier ScienceDirect Journals</source><source>Sociological Abstracts</source><creator>Stoltenberg, Daniela ; Maier, Daniel ; Waldherr, Annie</creator><creatorcontrib>Stoltenberg, Daniela ; Maier, Daniel ; Waldherr, Annie</creatorcontrib><description>•A typology of meanings of communities in civil society online networks is proposed.•Methodological guidance grounded in substantive social theory is offered.•Very different communities emerge in the same network, depending on the method. Community detection is a fundamental challenge in the analysis of online networks. However, there is a lack of consensus regarding how to accomplish this task in a manner that acknowledges domain-specific, substantive social theory. We develop a typology of what social phenomena communities of hyperlinked actors may signify—topical similarities, ideological associations, strategic alliances, and potential user traffic—and offer recommendations for community detection grounded in these concepts. Testing procedures on a hyperlink network of the food safety movement, we demonstrate that the handling of tie directions and weights as well as algorithm choice influence which communities are ultimately detected in such a network.</description><identifier>ISSN: 0378-8733</identifier><identifier>EISSN: 1879-2111</identifier><identifier>DOI: 10.1016/j.socnet.2019.07.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alliances ; Civil society ; Cohesive subgroup ; Community ; Community detection ; Computational methods ; Food ; Food safety ; Hyperlink network analysis ; Internet ; Social theories ; Typology</subject><ispartof>Social networks, 2019-10, Vol.59, p.120-133</ispartof><rights>2019 The Authors</rights><rights>Copyright Elsevier Science Ltd. Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-490f7688917bdc0fa9e7bfba618275ded9fb599e40bd561e77e261f73b91ca273</citedby><cites>FETCH-LOGICAL-c380t-490f7688917bdc0fa9e7bfba618275ded9fb599e40bd561e77e261f73b91ca273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378873318301138$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,33753,65309</link.rule.ids></links><search><creatorcontrib>Stoltenberg, Daniela</creatorcontrib><creatorcontrib>Maier, Daniel</creatorcontrib><creatorcontrib>Waldherr, Annie</creatorcontrib><title>Community detection in civil society online networks: Theoretical guide and empirical assessment</title><title>Social networks</title><description>•A typology of meanings of communities in civil society online networks is proposed.•Methodological guidance grounded in substantive social theory is offered.•Very different communities emerge in the same network, depending on the method. Community detection is a fundamental challenge in the analysis of online networks. However, there is a lack of consensus regarding how to accomplish this task in a manner that acknowledges domain-specific, substantive social theory. We develop a typology of what social phenomena communities of hyperlinked actors may signify—topical similarities, ideological associations, strategic alliances, and potential user traffic—and offer recommendations for community detection grounded in these concepts. Testing procedures on a hyperlink network of the food safety movement, we demonstrate that the handling of tie directions and weights as well as algorithm choice influence which communities are ultimately detected in such a network.</description><subject>Alliances</subject><subject>Civil society</subject><subject>Cohesive subgroup</subject><subject>Community</subject><subject>Community detection</subject><subject>Computational methods</subject><subject>Food</subject><subject>Food safety</subject><subject>Hyperlink network analysis</subject><subject>Internet</subject><subject>Social theories</subject><subject>Typology</subject><issn>0378-8733</issn><issn>1879-2111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwDxgsMSfYSRrbDEio4kuqxFJm49gXcEjsYqdF_fe4hJnppLv3Q_cgdElJTgmtr7s8eu1gzAtCRU5YTgg9QjPKmcgKSukxmpGS8YyzsjxFZzF2hJCaUT5Db0s_DFtnxz02MIIerXfYOqztzvY4xVpIJ-966wCnim8fPuMNXn-ADzBarXr8vrUGsHIGw7Cx4XenYoQYB3DjOTppVR_h4m_O0evD_Xr5lK1eHp-Xd6tMl5yMWSVIy2rOBWWN0aRVAljTNqqmvGALA0a0zUIIqEhjFjUFxqCoacvKRlCtClbO0dWUuwn-awtxlJ3fBpcqZVEIUVVVUddJVU0qHXyMAVq5CXZQYS8pkQeWspMTS3lgKQmTiWWy3U42SB_sLAQZExinwdiQmEnj7f8BP5c2gQE</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Stoltenberg, Daniela</creator><creator>Maier, Daniel</creator><creator>Waldherr, Annie</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope></search><sort><creationdate>201910</creationdate><title>Community detection in civil society online networks: Theoretical guide and empirical assessment</title><author>Stoltenberg, Daniela ; Maier, Daniel ; Waldherr, Annie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-490f7688917bdc0fa9e7bfba618275ded9fb599e40bd561e77e261f73b91ca273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alliances</topic><topic>Civil society</topic><topic>Cohesive subgroup</topic><topic>Community</topic><topic>Community detection</topic><topic>Computational methods</topic><topic>Food</topic><topic>Food safety</topic><topic>Hyperlink network analysis</topic><topic>Internet</topic><topic>Social theories</topic><topic>Typology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoltenberg, Daniela</creatorcontrib><creatorcontrib>Maier, Daniel</creatorcontrib><creatorcontrib>Waldherr, Annie</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Social networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoltenberg, Daniela</au><au>Maier, Daniel</au><au>Waldherr, Annie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Community detection in civil society online networks: Theoretical guide and empirical assessment</atitle><jtitle>Social networks</jtitle><date>2019-10</date><risdate>2019</risdate><volume>59</volume><spage>120</spage><epage>133</epage><pages>120-133</pages><issn>0378-8733</issn><eissn>1879-2111</eissn><abstract>•A typology of meanings of communities in civil society online networks is proposed.•Methodological guidance grounded in substantive social theory is offered.•Very different communities emerge in the same network, depending on the method. Community detection is a fundamental challenge in the analysis of online networks. However, there is a lack of consensus regarding how to accomplish this task in a manner that acknowledges domain-specific, substantive social theory. We develop a typology of what social phenomena communities of hyperlinked actors may signify—topical similarities, ideological associations, strategic alliances, and potential user traffic—and offer recommendations for community detection grounded in these concepts. Testing procedures on a hyperlink network of the food safety movement, we demonstrate that the handling of tie directions and weights as well as algorithm choice influence which communities are ultimately detected in such a network.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.socnet.2019.07.001</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-8733
ispartof Social networks, 2019-10, Vol.59, p.120-133
issn 0378-8733
1879-2111
language eng
recordid cdi_proquest_journals_2299444266
source Elsevier ScienceDirect Journals; Sociological Abstracts
subjects Alliances
Civil society
Cohesive subgroup
Community
Community detection
Computational methods
Food
Food safety
Hyperlink network analysis
Internet
Social theories
Typology
title Community detection in civil society online networks: Theoretical guide and empirical assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Community%20detection%20in%20civil%20society%20online%20networks:%20Theoretical%20guide%20and%20empirical%20assessment&rft.jtitle=Social%20networks&rft.au=Stoltenberg,%20Daniela&rft.date=2019-10&rft.volume=59&rft.spage=120&rft.epage=133&rft.pages=120-133&rft.issn=0378-8733&rft.eissn=1879-2111&rft_id=info:doi/10.1016/j.socnet.2019.07.001&rft_dat=%3Cproquest_cross%3E2299444266%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299444266&rft_id=info:pmid/&rft_els_id=S0378873318301138&rfr_iscdi=true