Analysing the dynamics and relative influence of variables affecting ecosystem responses using functional PCA and boosted regression trees: A seagrass case study
Understanding the relative influence of variables on ecosystem responses and the dynamics of their effect is necessary for effective ecosystem monitoring and management. Also known as causal pathways analysis, we develop an approach using functional Principal Components Analysis (fPCA) and machine l...
Gespeichert in:
Veröffentlicht in: | Methods in ecology and evolution 2019-10, Vol.10 (10), p.1723-1733 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1733 |
---|---|
container_issue | 10 |
container_start_page | 1723 |
container_title | Methods in ecology and evolution |
container_volume | 10 |
creator | Wu, Paul Pao‐Yen Mengersen, Kerrie Caley, M. Julian McMahon, Kathryn Rasheed, Michael A. Kendrick, Gary A. Poisot, Timothée |
description | Understanding the relative influence of variables on ecosystem responses and the dynamics of their effect is necessary for effective ecosystem monitoring and management. Also known as causal pathways analysis, we develop an approach using functional Principal Components Analysis (fPCA) and machine learning within a scenario analysis framework.
fPCA is used to identify most influential variables for correlated, non‐homogenoeus and nonlinear time series data characteristic of complex ecosystems. Hierarchical clustering of fPCA scores reveals groups of more homogeneous scenarios and similarly influential variables. The resultant subset of variables helps to overcome model identifiability problems when analysing time‐lagged effects using Boosted Regression Trees (BRT).
We use simulated data generated by a Dynamic Bayesian Network (DBN) of ecological windows for seagrass ecosystems given dredging stressors; 3,024 scenarios with 75 state variables are analysed. The BRT demonstrated a high level of fit (R2≈0.97,MSE≈0.16), supporting the validity of influential variables identified by fPCA. Influential variables identified included genus, location type, light, growth and seed. Six consecutive months of positive growth and adequate light were important for predicting states of high or moderate population.
Compared to traditional scenario analysis and sensitivity analysis approaches, our approach simultaneously enabled capture of n‐way interactions while accounting for time correlations. Although some variables and their dynamics agreed with existing knowledge, new variables and/or time lags of their effects were identified, corresponding to opportunities for further investigation as well as informing monitoring and management. Although we demonstrate our method on state variables with DBN simulated data, it is equally applicable to general time series data. |
doi_str_mv | 10.1111/2041-210X.13269 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2299342968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299342968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-88b7677b5407c88859b0937c8e2735dbd12abc0a2507d1e42013ac9843c39af93</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhoMoWLRnrwue0-5HvtZbKfUDKnpQ8LZsNpOakmbrTlLJz_GfumlEvDmXGXae991hJgiuGJ0xH3NOIxZyRt9mTPBEngST35fTP_V5MEXcUh8ik5RHk-Br0ei6x6rZkPYdSNE3elcZJLopiINat9UBSNWUdQeNAWJLctCu0nkNnilLMO0gBWOxxxZ2XoN726DvdkfTsms8Yv0n5Hm5ONrm1np0sN94Gn2TtA4Ab8iCIOiN04jEaASCbVf0l8FZqWuE6U--CF5vVy_L-3D9dPewXKxDI-JUhlmWp0ma5nFEU5NlWSxzKoUvgaciLvKCcZ0bqnlM04JBxCkT2sgsEkZIXUpxEVyPvntnPzrAVm1t5_zgqDiXUkRcJpmn5iNlnEV0UKq9q3ba9YpRNZxCDctWw7LV8RRekYyKz6qG_j9cPa5WYhR-A7wCjcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299342968</pqid></control><display><type>article</type><title>Analysing the dynamics and relative influence of variables affecting ecosystem responses using functional PCA and boosted regression trees: A seagrass case study</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Wu, Paul Pao‐Yen ; Mengersen, Kerrie ; Caley, M. Julian ; McMahon, Kathryn ; Rasheed, Michael A. ; Kendrick, Gary A. ; Poisot, Timothée</creator><contributor>Poisot, Timothée</contributor><creatorcontrib>Wu, Paul Pao‐Yen ; Mengersen, Kerrie ; Caley, M. Julian ; McMahon, Kathryn ; Rasheed, Michael A. ; Kendrick, Gary A. ; Poisot, Timothée ; Poisot, Timothée</creatorcontrib><description>Understanding the relative influence of variables on ecosystem responses and the dynamics of their effect is necessary for effective ecosystem monitoring and management. Also known as causal pathways analysis, we develop an approach using functional Principal Components Analysis (fPCA) and machine learning within a scenario analysis framework.
fPCA is used to identify most influential variables for correlated, non‐homogenoeus and nonlinear time series data characteristic of complex ecosystems. Hierarchical clustering of fPCA scores reveals groups of more homogeneous scenarios and similarly influential variables. The resultant subset of variables helps to overcome model identifiability problems when analysing time‐lagged effects using Boosted Regression Trees (BRT).
We use simulated data generated by a Dynamic Bayesian Network (DBN) of ecological windows for seagrass ecosystems given dredging stressors; 3,024 scenarios with 75 state variables are analysed. The BRT demonstrated a high level of fit (R2≈0.97,MSE≈0.16), supporting the validity of influential variables identified by fPCA. Influential variables identified included genus, location type, light, growth and seed. Six consecutive months of positive growth and adequate light were important for predicting states of high or moderate population.
Compared to traditional scenario analysis and sensitivity analysis approaches, our approach simultaneously enabled capture of n‐way interactions while accounting for time correlations. Although some variables and their dynamics agreed with existing knowledge, new variables and/or time lags of their effects were identified, corresponding to opportunities for further investigation as well as informing monitoring and management. Although we demonstrate our method on state variables with DBN simulated data, it is equally applicable to general time series data.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.13269</identifier><language>eng</language><publisher>London: John Wiley & Sons, Inc</publisher><subject>Bayesian analysis ; Cluster analysis ; Clustering ; complex systems ; Computer simulation ; conservation and management ; Dredging ; dynamic Bayesian networks ; Ecological monitoring ; Economic models ; Ecosystem assessment ; Ecosystem management ; Ecosystems ; functional PCA ; Learning algorithms ; Machine learning ; Principal components analysis ; Regression analysis ; scenario analysis ; Sensitivity analysis ; State variable ; Time series ; time series modelling ; Trees</subject><ispartof>Methods in ecology and evolution, 2019-10, Vol.10 (10), p.1723-1733</ispartof><rights>2019 The Authors. Methods in Ecology and Evolution © 2019 British Ecological Society</rights><rights>Methods in Ecology and Evolution © 2019 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-88b7677b5407c88859b0937c8e2735dbd12abc0a2507d1e42013ac9843c39af93</citedby><cites>FETCH-LOGICAL-c3579-88b7677b5407c88859b0937c8e2735dbd12abc0a2507d1e42013ac9843c39af93</cites><orcidid>0000-0001-5960-8203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.13269$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.13269$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><contributor>Poisot, Timothée</contributor><creatorcontrib>Wu, Paul Pao‐Yen</creatorcontrib><creatorcontrib>Mengersen, Kerrie</creatorcontrib><creatorcontrib>Caley, M. Julian</creatorcontrib><creatorcontrib>McMahon, Kathryn</creatorcontrib><creatorcontrib>Rasheed, Michael A.</creatorcontrib><creatorcontrib>Kendrick, Gary A.</creatorcontrib><creatorcontrib>Poisot, Timothée</creatorcontrib><title>Analysing the dynamics and relative influence of variables affecting ecosystem responses using functional PCA and boosted regression trees: A seagrass case study</title><title>Methods in ecology and evolution</title><description>Understanding the relative influence of variables on ecosystem responses and the dynamics of their effect is necessary for effective ecosystem monitoring and management. Also known as causal pathways analysis, we develop an approach using functional Principal Components Analysis (fPCA) and machine learning within a scenario analysis framework.
fPCA is used to identify most influential variables for correlated, non‐homogenoeus and nonlinear time series data characteristic of complex ecosystems. Hierarchical clustering of fPCA scores reveals groups of more homogeneous scenarios and similarly influential variables. The resultant subset of variables helps to overcome model identifiability problems when analysing time‐lagged effects using Boosted Regression Trees (BRT).
We use simulated data generated by a Dynamic Bayesian Network (DBN) of ecological windows for seagrass ecosystems given dredging stressors; 3,024 scenarios with 75 state variables are analysed. The BRT demonstrated a high level of fit (R2≈0.97,MSE≈0.16), supporting the validity of influential variables identified by fPCA. Influential variables identified included genus, location type, light, growth and seed. Six consecutive months of positive growth and adequate light were important for predicting states of high or moderate population.
Compared to traditional scenario analysis and sensitivity analysis approaches, our approach simultaneously enabled capture of n‐way interactions while accounting for time correlations. Although some variables and their dynamics agreed with existing knowledge, new variables and/or time lags of their effects were identified, corresponding to opportunities for further investigation as well as informing monitoring and management. Although we demonstrate our method on state variables with DBN simulated data, it is equally applicable to general time series data.</description><subject>Bayesian analysis</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>complex systems</subject><subject>Computer simulation</subject><subject>conservation and management</subject><subject>Dredging</subject><subject>dynamic Bayesian networks</subject><subject>Ecological monitoring</subject><subject>Economic models</subject><subject>Ecosystem assessment</subject><subject>Ecosystem management</subject><subject>Ecosystems</subject><subject>functional PCA</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Principal components analysis</subject><subject>Regression analysis</subject><subject>scenario analysis</subject><subject>Sensitivity analysis</subject><subject>State variable</subject><subject>Time series</subject><subject>time series modelling</subject><subject>Trees</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU1Lw0AQhoMoWLRnrwue0-5HvtZbKfUDKnpQ8LZsNpOakmbrTlLJz_GfumlEvDmXGXae991hJgiuGJ0xH3NOIxZyRt9mTPBEngST35fTP_V5MEXcUh8ik5RHk-Br0ei6x6rZkPYdSNE3elcZJLopiINat9UBSNWUdQeNAWJLctCu0nkNnilLMO0gBWOxxxZ2XoN726DvdkfTsms8Yv0n5Hm5ONrm1np0sN94Gn2TtA4Ab8iCIOiN04jEaASCbVf0l8FZqWuE6U--CF5vVy_L-3D9dPewXKxDI-JUhlmWp0ma5nFEU5NlWSxzKoUvgaciLvKCcZ0bqnlM04JBxCkT2sgsEkZIXUpxEVyPvntnPzrAVm1t5_zgqDiXUkRcJpmn5iNlnEV0UKq9q3ba9YpRNZxCDctWw7LV8RRekYyKz6qG_j9cPa5WYhR-A7wCjcM</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Wu, Paul Pao‐Yen</creator><creator>Mengersen, Kerrie</creator><creator>Caley, M. Julian</creator><creator>McMahon, Kathryn</creator><creator>Rasheed, Michael A.</creator><creator>Kendrick, Gary A.</creator><creator>Poisot, Timothée</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-5960-8203</orcidid></search><sort><creationdate>201910</creationdate><title>Analysing the dynamics and relative influence of variables affecting ecosystem responses using functional PCA and boosted regression trees: A seagrass case study</title><author>Wu, Paul Pao‐Yen ; Mengersen, Kerrie ; Caley, M. Julian ; McMahon, Kathryn ; Rasheed, Michael A. ; Kendrick, Gary A. ; Poisot, Timothée</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-88b7677b5407c88859b0937c8e2735dbd12abc0a2507d1e42013ac9843c39af93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>complex systems</topic><topic>Computer simulation</topic><topic>conservation and management</topic><topic>Dredging</topic><topic>dynamic Bayesian networks</topic><topic>Ecological monitoring</topic><topic>Economic models</topic><topic>Ecosystem assessment</topic><topic>Ecosystem management</topic><topic>Ecosystems</topic><topic>functional PCA</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Principal components analysis</topic><topic>Regression analysis</topic><topic>scenario analysis</topic><topic>Sensitivity analysis</topic><topic>State variable</topic><topic>Time series</topic><topic>time series modelling</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Paul Pao‐Yen</creatorcontrib><creatorcontrib>Mengersen, Kerrie</creatorcontrib><creatorcontrib>Caley, M. Julian</creatorcontrib><creatorcontrib>McMahon, Kathryn</creatorcontrib><creatorcontrib>Rasheed, Michael A.</creatorcontrib><creatorcontrib>Kendrick, Gary A.</creatorcontrib><creatorcontrib>Poisot, Timothée</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Paul Pao‐Yen</au><au>Mengersen, Kerrie</au><au>Caley, M. Julian</au><au>McMahon, Kathryn</au><au>Rasheed, Michael A.</au><au>Kendrick, Gary A.</au><au>Poisot, Timothée</au><au>Poisot, Timothée</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysing the dynamics and relative influence of variables affecting ecosystem responses using functional PCA and boosted regression trees: A seagrass case study</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2019-10</date><risdate>2019</risdate><volume>10</volume><issue>10</issue><spage>1723</spage><epage>1733</epage><pages>1723-1733</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Understanding the relative influence of variables on ecosystem responses and the dynamics of their effect is necessary for effective ecosystem monitoring and management. Also known as causal pathways analysis, we develop an approach using functional Principal Components Analysis (fPCA) and machine learning within a scenario analysis framework.
fPCA is used to identify most influential variables for correlated, non‐homogenoeus and nonlinear time series data characteristic of complex ecosystems. Hierarchical clustering of fPCA scores reveals groups of more homogeneous scenarios and similarly influential variables. The resultant subset of variables helps to overcome model identifiability problems when analysing time‐lagged effects using Boosted Regression Trees (BRT).
We use simulated data generated by a Dynamic Bayesian Network (DBN) of ecological windows for seagrass ecosystems given dredging stressors; 3,024 scenarios with 75 state variables are analysed. The BRT demonstrated a high level of fit (R2≈0.97,MSE≈0.16), supporting the validity of influential variables identified by fPCA. Influential variables identified included genus, location type, light, growth and seed. Six consecutive months of positive growth and adequate light were important for predicting states of high or moderate population.
Compared to traditional scenario analysis and sensitivity analysis approaches, our approach simultaneously enabled capture of n‐way interactions while accounting for time correlations. Although some variables and their dynamics agreed with existing knowledge, new variables and/or time lags of their effects were identified, corresponding to opportunities for further investigation as well as informing monitoring and management. Although we demonstrate our method on state variables with DBN simulated data, it is equally applicable to general time series data.</abstract><cop>London</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1111/2041-210X.13269</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5960-8203</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-210X |
ispartof | Methods in ecology and evolution, 2019-10, Vol.10 (10), p.1723-1733 |
issn | 2041-210X 2041-210X |
language | eng |
recordid | cdi_proquest_journals_2299342968 |
source | Access via Wiley Online Library; Alma/SFX Local Collection |
subjects | Bayesian analysis Cluster analysis Clustering complex systems Computer simulation conservation and management Dredging dynamic Bayesian networks Ecological monitoring Economic models Ecosystem assessment Ecosystem management Ecosystems functional PCA Learning algorithms Machine learning Principal components analysis Regression analysis scenario analysis Sensitivity analysis State variable Time series time series modelling Trees |
title | Analysing the dynamics and relative influence of variables affecting ecosystem responses using functional PCA and boosted regression trees: A seagrass case study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysing%20the%20dynamics%20and%20relative%20influence%20of%20variables%20affecting%20ecosystem%20responses%20using%20functional%20PCA%20and%20boosted%20regression%20trees:%20A%20seagrass%20case%20study&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Wu,%20Paul%20Pao%E2%80%90Yen&rft.date=2019-10&rft.volume=10&rft.issue=10&rft.spage=1723&rft.epage=1733&rft.pages=1723-1733&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.13269&rft_dat=%3Cproquest_cross%3E2299342968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299342968&rft_id=info:pmid/&rfr_iscdi=true |