Balancing Computation Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles

This paper focuses on the multi-vehicle motion planning (MVMP) problem for cooperative lane changes of connected and automated vehicles (CAVs). The predominant decentralized MVMP methods can hardly explore and utilize the cooperation capability of a multi-vehicle team, thus they usually lead to low-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent vehicles 2018-09, Vol.3 (3), p.340-350
Hauptverfasser: Li, Bai, Zhang, Youmin, Feng, Yiheng, Zhang, Yue, Ge, Yuming, Shao, Zhijiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue 3
container_start_page 340
container_title IEEE transactions on intelligent vehicles
container_volume 3
creator Li, Bai
Zhang, Youmin
Feng, Yiheng
Zhang, Yue
Ge, Yuming
Shao, Zhijiang
description This paper focuses on the multi-vehicle motion planning (MVMP) problem for cooperative lane changes of connected and automated vehicles (CAVs). The predominant decentralized MVMP methods can hardly explore and utilize the cooperation capability of a multi-vehicle team, thus they usually lead to low-quality solutions. This paper proposes a two-stage MVMP framework to find high-quality online solutions. Concretely, at stage 1, the CAV platoon transfers from its original formation to a sufficiently sparse formation; at stage 2, all the CAVs simultaneously change lanes with collision avoidance implicitly ensured. The CAVs only involve longitudinal rather than lateral motions at stage 1, thus the collision-avoidance constraints can be easily handled. Since stage 2 begins with a sparse formation, the implicitly ensured collision avoidance can be completely omitted then. Through this, the proposed method avoids directly handling the challenging collision avoidance conditions, thereby being able to compute fast. As the vehicles run cooperatively and simultaneously at either stage, the obtained solutions are near-optimal. The completeness, effectiveness, and quality of the proposed two-stage MVMP method are validated through theoretical analysis and comparative simulations.
doi_str_mv 10.1109/TIV.2018.2843159
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2299148403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8370703</ieee_id><sourcerecordid>2299148403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-882174b1e5979941ebb435ce960c3016bf610838dad3d240d95820b9b656f4d43</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWLR3wcuC59b9SrLrrcavQouKtdewSSZtSrobNxuh_gp_shtbPc0M877PMG8QXBA8JgTL68V0OaaYiDEVnJFQHgUDymI5EhLz479ehOI0GLbtBmNMIkEFloPg-1bVSueVXqHEbJvOKVcZjd4agAIpXaDXTtWV292gCbqDHLSzfv7yy7n5Vb54u-7tc3BrU6DSWE8yDVhP-gQ0UxpQslZ6BS0ypd9pDbk70CedM1vVT0tYV3kN7XlwUqq6heGhngXvD_eL5Gk0e36cJpPZKGdh7Pw3lMQ8IxDKWEpOIMs4C3OQEc6Zfy8rI4IFE4UqWEE5LmQoKM5kFoVRyQvOzoKrPbex5qOD1qUb01ntT6aUSkm44Jh5Fd6rcmva1kKZNrbaKrtLCU776FMffdpHnx6i95bLvaUCgH-5YDGOPfAHaAp_yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299148403</pqid></control><display><type>article</type><title>Balancing Computation Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Bai ; Zhang, Youmin ; Feng, Yiheng ; Zhang, Yue ; Ge, Yuming ; Shao, Zhijiang</creator><creatorcontrib>Li, Bai ; Zhang, Youmin ; Feng, Yiheng ; Zhang, Yue ; Ge, Yuming ; Shao, Zhijiang</creatorcontrib><description>This paper focuses on the multi-vehicle motion planning (MVMP) problem for cooperative lane changes of connected and automated vehicles (CAVs). The predominant decentralized MVMP methods can hardly explore and utilize the cooperation capability of a multi-vehicle team, thus they usually lead to low-quality solutions. This paper proposes a two-stage MVMP framework to find high-quality online solutions. Concretely, at stage 1, the CAV platoon transfers from its original formation to a sufficiently sparse formation; at stage 2, all the CAVs simultaneously change lanes with collision avoidance implicitly ensured. The CAVs only involve longitudinal rather than lateral motions at stage 1, thus the collision-avoidance constraints can be easily handled. Since stage 2 begins with a sparse formation, the implicitly ensured collision avoidance can be completely omitted then. Through this, the proposed method avoids directly handling the challenging collision avoidance conditions, thereby being able to compute fast. As the vehicles run cooperatively and simultaneously at either stage, the obtained solutions are near-optimal. The completeness, effectiveness, and quality of the proposed two-stage MVMP method are validated through theoretical analysis and comparative simulations.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2018.2843159</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automation ; Collision avoidance ; Collisions ; Computational complexity ; Computer simulation ; connected and automated vehicles (CAVs) ; Intelligent vehicles ; Kinematics ; lane change ; Lane changing ; Motion planning ; optimization method ; Planning ; Roads ; Systems engineering and theory ; Vehicles</subject><ispartof>IEEE transactions on intelligent vehicles, 2018-09, Vol.3 (3), p.340-350</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-882174b1e5979941ebb435ce960c3016bf610838dad3d240d95820b9b656f4d43</citedby><cites>FETCH-LOGICAL-c357t-882174b1e5979941ebb435ce960c3016bf610838dad3d240d95820b9b656f4d43</cites><orcidid>0000-0002-8966-8992 ; 0000-0001-5656-3222 ; 0000-0002-9731-5943 ; 0000-0001-7366-3778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8370703$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8370703$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Bai</creatorcontrib><creatorcontrib>Zhang, Youmin</creatorcontrib><creatorcontrib>Feng, Yiheng</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Ge, Yuming</creatorcontrib><creatorcontrib>Shao, Zhijiang</creatorcontrib><title>Balancing Computation Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>This paper focuses on the multi-vehicle motion planning (MVMP) problem for cooperative lane changes of connected and automated vehicles (CAVs). The predominant decentralized MVMP methods can hardly explore and utilize the cooperation capability of a multi-vehicle team, thus they usually lead to low-quality solutions. This paper proposes a two-stage MVMP framework to find high-quality online solutions. Concretely, at stage 1, the CAV platoon transfers from its original formation to a sufficiently sparse formation; at stage 2, all the CAVs simultaneously change lanes with collision avoidance implicitly ensured. The CAVs only involve longitudinal rather than lateral motions at stage 1, thus the collision-avoidance constraints can be easily handled. Since stage 2 begins with a sparse formation, the implicitly ensured collision avoidance can be completely omitted then. Through this, the proposed method avoids directly handling the challenging collision avoidance conditions, thereby being able to compute fast. As the vehicles run cooperatively and simultaneously at either stage, the obtained solutions are near-optimal. The completeness, effectiveness, and quality of the proposed two-stage MVMP method are validated through theoretical analysis and comparative simulations.</description><subject>Automation</subject><subject>Collision avoidance</subject><subject>Collisions</subject><subject>Computational complexity</subject><subject>Computer simulation</subject><subject>connected and automated vehicles (CAVs)</subject><subject>Intelligent vehicles</subject><subject>Kinematics</subject><subject>lane change</subject><subject>Lane changing</subject><subject>Motion planning</subject><subject>optimization method</subject><subject>Planning</subject><subject>Roads</subject><subject>Systems engineering and theory</subject><subject>Vehicles</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhoMoWLR3wcuC59b9SrLrrcavQouKtdewSSZtSrobNxuh_gp_shtbPc0M877PMG8QXBA8JgTL68V0OaaYiDEVnJFQHgUDymI5EhLz479ehOI0GLbtBmNMIkEFloPg-1bVSueVXqHEbJvOKVcZjd4agAIpXaDXTtWV292gCbqDHLSzfv7yy7n5Vb54u-7tc3BrU6DSWE8yDVhP-gQ0UxpQslZ6BS0ypd9pDbk70CedM1vVT0tYV3kN7XlwUqq6heGhngXvD_eL5Gk0e36cJpPZKGdh7Pw3lMQ8IxDKWEpOIMs4C3OQEc6Zfy8rI4IFE4UqWEE5LmQoKM5kFoVRyQvOzoKrPbex5qOD1qUb01ntT6aUSkm44Jh5Fd6rcmva1kKZNrbaKrtLCU776FMffdpHnx6i95bLvaUCgH-5YDGOPfAHaAp_yw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Li, Bai</creator><creator>Zhang, Youmin</creator><creator>Feng, Yiheng</creator><creator>Zhang, Yue</creator><creator>Ge, Yuming</creator><creator>Shao, Zhijiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8966-8992</orcidid><orcidid>https://orcid.org/0000-0001-5656-3222</orcidid><orcidid>https://orcid.org/0000-0002-9731-5943</orcidid><orcidid>https://orcid.org/0000-0001-7366-3778</orcidid></search><sort><creationdate>20180901</creationdate><title>Balancing Computation Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles</title><author>Li, Bai ; Zhang, Youmin ; Feng, Yiheng ; Zhang, Yue ; Ge, Yuming ; Shao, Zhijiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-882174b1e5979941ebb435ce960c3016bf610838dad3d240d95820b9b656f4d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automation</topic><topic>Collision avoidance</topic><topic>Collisions</topic><topic>Computational complexity</topic><topic>Computer simulation</topic><topic>connected and automated vehicles (CAVs)</topic><topic>Intelligent vehicles</topic><topic>Kinematics</topic><topic>lane change</topic><topic>Lane changing</topic><topic>Motion planning</topic><topic>optimization method</topic><topic>Planning</topic><topic>Roads</topic><topic>Systems engineering and theory</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bai</creatorcontrib><creatorcontrib>Zhang, Youmin</creatorcontrib><creatorcontrib>Feng, Yiheng</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Ge, Yuming</creatorcontrib><creatorcontrib>Shao, Zhijiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Bai</au><au>Zhang, Youmin</au><au>Feng, Yiheng</au><au>Zhang, Yue</au><au>Ge, Yuming</au><au>Shao, Zhijiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Balancing Computation Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>3</volume><issue>3</issue><spage>340</spage><epage>350</epage><pages>340-350</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>This paper focuses on the multi-vehicle motion planning (MVMP) problem for cooperative lane changes of connected and automated vehicles (CAVs). The predominant decentralized MVMP methods can hardly explore and utilize the cooperation capability of a multi-vehicle team, thus they usually lead to low-quality solutions. This paper proposes a two-stage MVMP framework to find high-quality online solutions. Concretely, at stage 1, the CAV platoon transfers from its original formation to a sufficiently sparse formation; at stage 2, all the CAVs simultaneously change lanes with collision avoidance implicitly ensured. The CAVs only involve longitudinal rather than lateral motions at stage 1, thus the collision-avoidance constraints can be easily handled. Since stage 2 begins with a sparse formation, the implicitly ensured collision avoidance can be completely omitted then. Through this, the proposed method avoids directly handling the challenging collision avoidance conditions, thereby being able to compute fast. As the vehicles run cooperatively and simultaneously at either stage, the obtained solutions are near-optimal. The completeness, effectiveness, and quality of the proposed two-stage MVMP method are validated through theoretical analysis and comparative simulations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2018.2843159</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8966-8992</orcidid><orcidid>https://orcid.org/0000-0001-5656-3222</orcidid><orcidid>https://orcid.org/0000-0002-9731-5943</orcidid><orcidid>https://orcid.org/0000-0001-7366-3778</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-8858
ispartof IEEE transactions on intelligent vehicles, 2018-09, Vol.3 (3), p.340-350
issn 2379-8858
2379-8904
language eng
recordid cdi_proquest_journals_2299148403
source IEEE Electronic Library (IEL)
subjects Automation
Collision avoidance
Collisions
Computational complexity
Computer simulation
connected and automated vehicles (CAVs)
Intelligent vehicles
Kinematics
lane change
Lane changing
Motion planning
optimization method
Planning
Roads
Systems engineering and theory
Vehicles
title Balancing Computation Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Balancing%20Computation%20Speed%20and%20Quality:%20A%20Decentralized%20Motion%20Planning%20Method%20for%20Cooperative%20Lane%20Changes%20of%20Connected%20and%20Automated%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Li,%20Bai&rft.date=2018-09-01&rft.volume=3&rft.issue=3&rft.spage=340&rft.epage=350&rft.pages=340-350&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2018.2843159&rft_dat=%3Cproquest_RIE%3E2299148403%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299148403&rft_id=info:pmid/&rft_ieee_id=8370703&rfr_iscdi=true