Balancing Computation Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles
This paper focuses on the multi-vehicle motion planning (MVMP) problem for cooperative lane changes of connected and automated vehicles (CAVs). The predominant decentralized MVMP methods can hardly explore and utilize the cooperation capability of a multi-vehicle team, thus they usually lead to low-...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent vehicles 2018-09, Vol.3 (3), p.340-350 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 350 |
---|---|
container_issue | 3 |
container_start_page | 340 |
container_title | IEEE transactions on intelligent vehicles |
container_volume | 3 |
creator | Li, Bai Zhang, Youmin Feng, Yiheng Zhang, Yue Ge, Yuming Shao, Zhijiang |
description | This paper focuses on the multi-vehicle motion planning (MVMP) problem for cooperative lane changes of connected and automated vehicles (CAVs). The predominant decentralized MVMP methods can hardly explore and utilize the cooperation capability of a multi-vehicle team, thus they usually lead to low-quality solutions. This paper proposes a two-stage MVMP framework to find high-quality online solutions. Concretely, at stage 1, the CAV platoon transfers from its original formation to a sufficiently sparse formation; at stage 2, all the CAVs simultaneously change lanes with collision avoidance implicitly ensured. The CAVs only involve longitudinal rather than lateral motions at stage 1, thus the collision-avoidance constraints can be easily handled. Since stage 2 begins with a sparse formation, the implicitly ensured collision avoidance can be completely omitted then. Through this, the proposed method avoids directly handling the challenging collision avoidance conditions, thereby being able to compute fast. As the vehicles run cooperatively and simultaneously at either stage, the obtained solutions are near-optimal. The completeness, effectiveness, and quality of the proposed two-stage MVMP method are validated through theoretical analysis and comparative simulations. |
doi_str_mv | 10.1109/TIV.2018.2843159 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2299148403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8370703</ieee_id><sourcerecordid>2299148403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-882174b1e5979941ebb435ce960c3016bf610838dad3d240d95820b9b656f4d43</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWLR3wcuC59b9SrLrrcavQouKtdewSSZtSrobNxuh_gp_shtbPc0M877PMG8QXBA8JgTL68V0OaaYiDEVnJFQHgUDymI5EhLz479ehOI0GLbtBmNMIkEFloPg-1bVSueVXqHEbJvOKVcZjd4agAIpXaDXTtWV292gCbqDHLSzfv7yy7n5Vb54u-7tc3BrU6DSWE8yDVhP-gQ0UxpQslZ6BS0ypd9pDbk70CedM1vVT0tYV3kN7XlwUqq6heGhngXvD_eL5Gk0e36cJpPZKGdh7Pw3lMQ8IxDKWEpOIMs4C3OQEc6Zfy8rI4IFE4UqWEE5LmQoKM5kFoVRyQvOzoKrPbex5qOD1qUb01ntT6aUSkm44Jh5Fd6rcmva1kKZNrbaKrtLCU776FMffdpHnx6i95bLvaUCgH-5YDGOPfAHaAp_yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299148403</pqid></control><display><type>article</type><title>Balancing Computation Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Bai ; Zhang, Youmin ; Feng, Yiheng ; Zhang, Yue ; Ge, Yuming ; Shao, Zhijiang</creator><creatorcontrib>Li, Bai ; Zhang, Youmin ; Feng, Yiheng ; Zhang, Yue ; Ge, Yuming ; Shao, Zhijiang</creatorcontrib><description>This paper focuses on the multi-vehicle motion planning (MVMP) problem for cooperative lane changes of connected and automated vehicles (CAVs). The predominant decentralized MVMP methods can hardly explore and utilize the cooperation capability of a multi-vehicle team, thus they usually lead to low-quality solutions. This paper proposes a two-stage MVMP framework to find high-quality online solutions. Concretely, at stage 1, the CAV platoon transfers from its original formation to a sufficiently sparse formation; at stage 2, all the CAVs simultaneously change lanes with collision avoidance implicitly ensured. The CAVs only involve longitudinal rather than lateral motions at stage 1, thus the collision-avoidance constraints can be easily handled. Since stage 2 begins with a sparse formation, the implicitly ensured collision avoidance can be completely omitted then. Through this, the proposed method avoids directly handling the challenging collision avoidance conditions, thereby being able to compute fast. As the vehicles run cooperatively and simultaneously at either stage, the obtained solutions are near-optimal. The completeness, effectiveness, and quality of the proposed two-stage MVMP method are validated through theoretical analysis and comparative simulations.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2018.2843159</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automation ; Collision avoidance ; Collisions ; Computational complexity ; Computer simulation ; connected and automated vehicles (CAVs) ; Intelligent vehicles ; Kinematics ; lane change ; Lane changing ; Motion planning ; optimization method ; Planning ; Roads ; Systems engineering and theory ; Vehicles</subject><ispartof>IEEE transactions on intelligent vehicles, 2018-09, Vol.3 (3), p.340-350</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-882174b1e5979941ebb435ce960c3016bf610838dad3d240d95820b9b656f4d43</citedby><cites>FETCH-LOGICAL-c357t-882174b1e5979941ebb435ce960c3016bf610838dad3d240d95820b9b656f4d43</cites><orcidid>0000-0002-8966-8992 ; 0000-0001-5656-3222 ; 0000-0002-9731-5943 ; 0000-0001-7366-3778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8370703$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8370703$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Bai</creatorcontrib><creatorcontrib>Zhang, Youmin</creatorcontrib><creatorcontrib>Feng, Yiheng</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Ge, Yuming</creatorcontrib><creatorcontrib>Shao, Zhijiang</creatorcontrib><title>Balancing Computation Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>This paper focuses on the multi-vehicle motion planning (MVMP) problem for cooperative lane changes of connected and automated vehicles (CAVs). The predominant decentralized MVMP methods can hardly explore and utilize the cooperation capability of a multi-vehicle team, thus they usually lead to low-quality solutions. This paper proposes a two-stage MVMP framework to find high-quality online solutions. Concretely, at stage 1, the CAV platoon transfers from its original formation to a sufficiently sparse formation; at stage 2, all the CAVs simultaneously change lanes with collision avoidance implicitly ensured. The CAVs only involve longitudinal rather than lateral motions at stage 1, thus the collision-avoidance constraints can be easily handled. Since stage 2 begins with a sparse formation, the implicitly ensured collision avoidance can be completely omitted then. Through this, the proposed method avoids directly handling the challenging collision avoidance conditions, thereby being able to compute fast. As the vehicles run cooperatively and simultaneously at either stage, the obtained solutions are near-optimal. The completeness, effectiveness, and quality of the proposed two-stage MVMP method are validated through theoretical analysis and comparative simulations.</description><subject>Automation</subject><subject>Collision avoidance</subject><subject>Collisions</subject><subject>Computational complexity</subject><subject>Computer simulation</subject><subject>connected and automated vehicles (CAVs)</subject><subject>Intelligent vehicles</subject><subject>Kinematics</subject><subject>lane change</subject><subject>Lane changing</subject><subject>Motion planning</subject><subject>optimization method</subject><subject>Planning</subject><subject>Roads</subject><subject>Systems engineering and theory</subject><subject>Vehicles</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhoMoWLR3wcuC59b9SrLrrcavQouKtdewSSZtSrobNxuh_gp_shtbPc0M877PMG8QXBA8JgTL68V0OaaYiDEVnJFQHgUDymI5EhLz479ehOI0GLbtBmNMIkEFloPg-1bVSueVXqHEbJvOKVcZjd4agAIpXaDXTtWV292gCbqDHLSzfv7yy7n5Vb54u-7tc3BrU6DSWE8yDVhP-gQ0UxpQslZ6BS0ypd9pDbk70CedM1vVT0tYV3kN7XlwUqq6heGhngXvD_eL5Gk0e36cJpPZKGdh7Pw3lMQ8IxDKWEpOIMs4C3OQEc6Zfy8rI4IFE4UqWEE5LmQoKM5kFoVRyQvOzoKrPbex5qOD1qUb01ntT6aUSkm44Jh5Fd6rcmva1kKZNrbaKrtLCU776FMffdpHnx6i95bLvaUCgH-5YDGOPfAHaAp_yw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Li, Bai</creator><creator>Zhang, Youmin</creator><creator>Feng, Yiheng</creator><creator>Zhang, Yue</creator><creator>Ge, Yuming</creator><creator>Shao, Zhijiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8966-8992</orcidid><orcidid>https://orcid.org/0000-0001-5656-3222</orcidid><orcidid>https://orcid.org/0000-0002-9731-5943</orcidid><orcidid>https://orcid.org/0000-0001-7366-3778</orcidid></search><sort><creationdate>20180901</creationdate><title>Balancing Computation Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles</title><author>Li, Bai ; Zhang, Youmin ; Feng, Yiheng ; Zhang, Yue ; Ge, Yuming ; Shao, Zhijiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-882174b1e5979941ebb435ce960c3016bf610838dad3d240d95820b9b656f4d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automation</topic><topic>Collision avoidance</topic><topic>Collisions</topic><topic>Computational complexity</topic><topic>Computer simulation</topic><topic>connected and automated vehicles (CAVs)</topic><topic>Intelligent vehicles</topic><topic>Kinematics</topic><topic>lane change</topic><topic>Lane changing</topic><topic>Motion planning</topic><topic>optimization method</topic><topic>Planning</topic><topic>Roads</topic><topic>Systems engineering and theory</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bai</creatorcontrib><creatorcontrib>Zhang, Youmin</creatorcontrib><creatorcontrib>Feng, Yiheng</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Ge, Yuming</creatorcontrib><creatorcontrib>Shao, Zhijiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Bai</au><au>Zhang, Youmin</au><au>Feng, Yiheng</au><au>Zhang, Yue</au><au>Ge, Yuming</au><au>Shao, Zhijiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Balancing Computation Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>3</volume><issue>3</issue><spage>340</spage><epage>350</epage><pages>340-350</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>This paper focuses on the multi-vehicle motion planning (MVMP) problem for cooperative lane changes of connected and automated vehicles (CAVs). The predominant decentralized MVMP methods can hardly explore and utilize the cooperation capability of a multi-vehicle team, thus they usually lead to low-quality solutions. This paper proposes a two-stage MVMP framework to find high-quality online solutions. Concretely, at stage 1, the CAV platoon transfers from its original formation to a sufficiently sparse formation; at stage 2, all the CAVs simultaneously change lanes with collision avoidance implicitly ensured. The CAVs only involve longitudinal rather than lateral motions at stage 1, thus the collision-avoidance constraints can be easily handled. Since stage 2 begins with a sparse formation, the implicitly ensured collision avoidance can be completely omitted then. Through this, the proposed method avoids directly handling the challenging collision avoidance conditions, thereby being able to compute fast. As the vehicles run cooperatively and simultaneously at either stage, the obtained solutions are near-optimal. The completeness, effectiveness, and quality of the proposed two-stage MVMP method are validated through theoretical analysis and comparative simulations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2018.2843159</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8966-8992</orcidid><orcidid>https://orcid.org/0000-0001-5656-3222</orcidid><orcidid>https://orcid.org/0000-0002-9731-5943</orcidid><orcidid>https://orcid.org/0000-0001-7366-3778</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-8858 |
ispartof | IEEE transactions on intelligent vehicles, 2018-09, Vol.3 (3), p.340-350 |
issn | 2379-8858 2379-8904 |
language | eng |
recordid | cdi_proquest_journals_2299148403 |
source | IEEE Electronic Library (IEL) |
subjects | Automation Collision avoidance Collisions Computational complexity Computer simulation connected and automated vehicles (CAVs) Intelligent vehicles Kinematics lane change Lane changing Motion planning optimization method Planning Roads Systems engineering and theory Vehicles |
title | Balancing Computation Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Balancing%20Computation%20Speed%20and%20Quality:%20A%20Decentralized%20Motion%20Planning%20Method%20for%20Cooperative%20Lane%20Changes%20of%20Connected%20and%20Automated%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Li,%20Bai&rft.date=2018-09-01&rft.volume=3&rft.issue=3&rft.spage=340&rft.epage=350&rft.pages=340-350&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2018.2843159&rft_dat=%3Cproquest_RIE%3E2299148403%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299148403&rft_id=info:pmid/&rft_ieee_id=8370703&rfr_iscdi=true |